Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 地理環境資源學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98966
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor郭巧玲zh_TW
dc.contributor.advisorChiao-Ling Kuoen
dc.contributor.author劉彥晴zh_TW
dc.contributor.authorYen-Ching Liuen
dc.date.accessioned2025-08-20T16:28:00Z-
dc.date.available2025-08-21-
dc.date.copyright2025-08-20-
dc.date.issued2025-
dc.date.submitted2025-08-14-
dc.identifier.citationAbid, S. K., Sulaiman, N., Chan, S. W., Nazir, U., Abid, M., Han, H., Ariza-Montes, A., & Vega-Muñoz, A. (2021). Toward an integrated disaster management approach: how artificial intelligence can boost disaster management. Sustainability, 13(22), 12560.
Alexander, D. E. (2002). Principles of emergency planning and management. oxford university press.
Aralikatte, R., Lamm, M., Hardt, D., & Søgaard, A. (2019). Ellipsis resolution as question answering: An evaluation. arXiv preprint arXiv:1908.11141.
Beigi, G., Hu, X., Maciejewski, R., & Liu, H. (2016). An overview of sentiment analysis in social media and its applications in disaster relief. Sentiment analysis and ontology engineering: An environment of computational intelligence, 313–340.
Bouyerbou, H., Bechkoum, K., & Lepage, R. (2019). Geographic ontology for major disasters: Methodology and implementation. International Journal of Disaster Risk Reduction, 34, 232–242.
Central Weather Administration. (2024). Typhoon General Summary (GAEMI). https://rdc28.cwa.gov.tw/TDB/public/typhoon_detail?typhoon_id=202403
Central Weather Administration. (2025). 35. What is the meaning of "Northwest typhoon"? Retrieved June 30, 2025 from https://www.cwa.gov.tw/V8/E/K/Encyclopedia/typhoon/typhoon_list05.html#typhoon-35
Central Weather Administration Seismological Center. (2025). Earthquake report. Retrieved June 30, 2025 from https://scweb.cwa.gov.tw/en-us/earthquake/data
Chiang, C.-F. (2017). PTT Disaster Events Extraction System [Master's thesis, National Central University]. https://hdl.handle.net/11296/35y7qv
CKIP. (2025). Coreference Resolution. CKIP. Retrieved June 30, 2025 from https://ckip.iis.sinica.edu.tw/project/coref
Corvey, W. J., Vieweg, S., Rood, T., & Palmer, M. (2010). Twitter in mass emergency: What nlp can contribute. Proceedings of the NAACL HLT 2010 workshop on computational linguistics in a world of social media, 23–24.
DBpedia. (2025). Global and unified access to knowledge graphs. DBpedia. Retrieved June 30, 2025 from https://www.dbpedia.org/
Del Mondo, G., Peng, P., Gensel, J., Claramunt, C., & Lu, F. (2021). Leveraging spatio-temporal graphs and knowledge graphs: Perspectives in the field of maritime transportation. ISPRS International Journal of Geo-Information, 10(8), 541.
Deng, D.-P. (2011). Harnessing Social Media for Mapping Disaster Relief Information. Journal of Cartography, 21(2), 1–21. https://doi.org/http://dx.doi.org/10.30006/JC.201110.0001
Devlin, J., Chang, M.-W., Lee, K., & Toutanova, K. (2018). Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805.
Du, Z., Li, Y., Zhang, Y., Tan, Y., & Wenhao, Z. (2020). Knowledge Graph Construction Method on Natural Disaster Emergency[J]. Geomatics & Information Science of Wuhan University, 45(9).
Facebook. (2025). Crisis response. Facebook. Retrieved June 30, 2025 from https://www.facebook.com/crisisresponse/
Ge, X., Yang, Y., Chen, J., Li, W., Huang, Z., Zhang, W., & Peng, L. (2022). Disaster prediction knowledge graph based on multi-source spatio-temporal information. Remote Sensing, 14(5), 1214.
Goodfellow, I., Bengio, Y., Courville, A., & Bengio, Y. (2016). Deep learning (Vol. 1). MIT press Cambridge.
Granell, C., & Ostermann, F. O. (2016). Beyond data collection: Objectives and methods of research using VGI and geo-social media for disaster management. Computers, Environment and Urban Systems, 59, 231–243.
Gruber, T. R. (1995). Toward principles for the design of ontologies used for knowledge sharing? International Journal of Human-Computer Studies, 43(5), 907–928. https://doi.org/https://doi.org/10.1006/ijhc.1995.1081
Guo, X., Qian, H., Wu, F., & Liu, J. (2021). A method for constructing geographical knowledge graph from multisource data. Sustainability, 13(19), 10602.
Hasanuzzaman, M., Hossain, S., & Shil, S. K. (2023). Enhancing disaster management through AI-driven predictive analytics: improving preparedness and response. International Journal of Advanced Engineering Technologies and Innovations, 1(01), 533–562.
Hu, Y., Mai, G., Cundy, C., Choi, K., Lao, N., Liu, W., Lakhanpal, G., Zhou, R. Z., & Joseph, K. (2023). Geo-knowledge-guided GPT models improve the extraction of location descriptions from disaster-related social media messages. International Journal of Geographical Information Science, 37(11), 2289–2318.
Huang, C.-M., Chan, E., & Hyder, A. A. (2010). Web 2.0 and Internet social networking: a new tool for disaster management?-Lessons from Taiwan. BMC medical informatics and decision making, 10, 1–5.
Hung, K.-C. (2006). An Ontology-based OpenGIS Web Service Architecture [Master's thesis, National Taiwan University].
IFRC. (2025). What is a disaster. IFRC. Retrieved June 30. 2025 from https://www.ifrc.org/our-work/disasters-climate-and-crises/what-disaster
Ivić, M. (2019). Artificial intelligence and geospatial analysis in disaster management. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 42, 161–166.
Jiang, B., Tan, L., Ren, Y., & Li, F. (2019). Intelligent interaction with virtual geographical environments based on geographic knowledge graph. ISPRS International Journal of Geo-Information, 8(10), 428.
Kim, H.-J., Baek, J.-W., & Chung, K. (2020). Optimization of associative knowledge graph using TF-IDF based ranking score. Applied Sciences, 10(13), 4590.
Kim, S., & Kwon, Y.-W. (2022). Construction of disaster knowledge graphs to enhance disaster resilience. 2022 IEEE International Conference on Big Data (Big Data),
Kryvasheyeu, Y., Chen, H., Obradovich, N., Moro, E., Van Hentenryck, P., Fowler, J., & Cebrian, M. (2016). Rapid assessment of disaster damage using social media activity. Science Advances, 2(3), e1500779. https://doi.org/doi:10.1126/sciadv.1500779
Lee, K. S. (2019). Explicit disaster response features in social media: safety check and community help usage on Facebook during Typhoon Mangkhut. Proceedings of the 21st International Conference on Human-Computer Interaction with Mobile Devices and Services, 1–12.
Li, S., & Sun, X. (2023). Application of public emotion feature extraction algorithm based on social media communication in public opinion analysis of natural disasters. PeerJ Computer Science, 9, e1417.
Lin, C.-J., Huang, C.-H., & Wu, C.-H. (2019). Using BERT to process Chinese Ellipsis and coreference in clinic dialogues. 2019 IEEE 20th International Conference on Information Reuse and Integration for Data Science (IRI), 414–418.
Lu, Y.-T. (2019). Constructing data standards for disaster prevention and notification based on knowledge ontology -A Case Study of Kaohsiung City Government [Master's thesis, Feng Chia University]. https://hdl.handle.net/11296/28h84e
Ma, K., Tan, Y., Xie, Z., Qiu, Q., & Chen, S. (2022). Chinese toponym recognition with variant neural structures from social media messages based on BERT methods. Journal of Geographical Systems, 24(2), 143–169.
Ma, Y., Xie, Z., Li, G., Ma, K., Huang, Z., Qiu, Q., & Liu, H. (2022). Text visualization for geological hazard documents via text mining and natural language processing. Earth Science Informatics, 1–16.
Ma, Z., Li, L., Yuan, Y., & Baecher, G. B. (2023). Appraising Situational Awareness in Social Media Data for Wildfire Response. In ASCE Inspire 2023 (pp. 289–297).
Ministry of the Interior. (2025). Disaster Prevention and Protection Act. Ministry of Justice, Taiwan Retrieved from https://law.moj.gov.tw/ENG/LawClass/LawAll.aspx?pcode=D0120014
Naaz, S., Abedin, Z. U., & Rizvi, D. R. (2021). Sequence classification of tweets with transfer learning via bert in the field of disaster management. EAI Endorsed Transactions on Scalable Information Systems, 8(31), e8–e8.
National Science and Technology Center for Disaster Reduction. (2025). Earthquake Emergency Response Operations, Geological Characteristics, and Disaster Data Compilation: The April 3rd Hualien Earthquake. https://den.ncdr.nat.gov.tw/media/xysiqur4/113_0403%E8%8A%B1%E8%93%AE%E5%9C%B0%E9%9C%87%E6%87%89%E8%AE%8A%E4%BD%9C%E6%A5%AD-%E5%9C%B0%E8%B3%AA%E7%89%B9%E6%80%A7%E5%8F%8A%E7%81%BD%E6%83%85%E8%B3%87%E6%96%99%E7%B6%9C%E6%95%B4.pdf
O’reilly, T. (2005). What is web 2.0.
Ontotext. (2025). What is a knowledge graph? Ontotext. Retrieved June 30, 2025 from https://www.ontotext.com/knowledgehub/fundamentals/what-is-a-knowledge-graph/
OpenAI. (2025). OpenAI developer platform. Retrieved June 30, 2025 from https://platform.openai.com/docs/overview
Paulheim, H. (2016). Knowledge graph refinement: A survey of approaches and evaluation methods. Semantic web, 8(3), 489–508.
Pujara, J., Miao, H., Getoor, L., & Cohen, W. (2013). Knowledge graph identification. The Semantic Web–ISWC 2013: 12th International Semantic Web Conference, Sydney, NSW, Australia, October 21-25, 2013, Proceedings, Part I 12,
Rada, R., Mili, H., Bicknell, E., & Blettner, M. (1989). Development and application of a metric on semantic nets. IEEE Transactions on Systems, Man, and Cybernetics, 19(1), 17–30. https://doi.org/10.1109/21.24528
Raimond, Y., & Abdallah, S. (2007). The event ontology.
Shan, S., Zhao, F., Wei, Y., & Liu, M. (2019). Disaster management 2.0: A real-time disaster damage assessment model based on mobile social media data—A case study of Weibo (Chinese Twitter). Safety science, 115, 393–413.
Siao, Y. H. (2021). 最新AI技術 : 知識圖譜集技術概念大成 (初版 ed.). 深智數位.
Speer, R., Chin, J., & Havasi, C. (2017). Conceptnet 5.5: An open multilingual graph of general knowledge. Proceedings of the AAAI conference on artificial intelligence, 31(1).
Sufi, F. (2024). A sustainable way forward: Systematic review of transformer technology in social-media-based disaster analytics. Sustainability, 16(7), 2742.
Sufi, F. K., & Khalil, I. (2022). Automated disaster monitoring from social media posts using AI-based location intelligence and sentiment analysis. IEEE Transactions on Computational Social Systems, 11(4), 4614–4624.
Sun, W., Bocchini, P., & Davison, B. D. (2020). Applications of artificial intelligence for disaster management. Natural Hazards, 103(3), 2631–2689.
Taiwan Network Information Center. (2024). Taiwan Internet Report 2024. T. N. I. Center. https://report.twnic.tw/2024/assets/download/TWNIC_TaiwanInternetReport_2024_CH_all.pdf
Tseng, Y.-H., Lee, L.-H., Lin, S.-Y., Liao, B.-S., Liu, M.-J., Chen, H.-H., Etzioni, O., & Fader, A. (2014). Chinese open relation extraction for knowledge acquisition. Proceedings of the 14th Conference of the European Chapter of the Association for Computational Linguistics, volume 2: Short Papers, 12–16.
W3C. (2025). RDF. World Wide Web Consortium (W3C). Retrieved June 30, 2025 from https://www.w3.org/RDF/
Wang, C., Nulty, P., & Lillis, D. (2021). Transformer-based multi-task learning for disaster tweet categorisation. arXiv preprint arXiv:2110.08010.
Wang, J. Z., Du, Z., Payattakool, R., Yu, P. S., & Chen, C.-F. (2007). A new method to measure the semantic similarity of GO terms. Bioinformatics, 23(10), 1274–1281.
Wang, S., Zhang, X., Ye, P., Du, M., Lu, Y., & Xue, H. (2019). Geographic knowledge graph (GeoKG): A formalized geographic knowledge representation. ISPRS International Journal of Geo-Information, 8(4), 184.
Weischedel, R., Pradhan, S., Ramshaw, L., Palmer, M., Xue, N., & Marcus, M. (2013). OntoNotes Release 5.0 (Version LDC2013T19) Linguistic Data Consortium.
WordNet. (2025). WordNet. Princeton University. Retrieved June 30, 2025 from https://wordnet.princeton.edu/
Wu, D.-Z., Lu, Y.-D., Tung, C.-M., Huang, B.-Y., Huang, H.-H., Lin, C.-D., & Lu, W.-H. (2022). Intelligent Future Recreation Harbor Application Service: Taking Kaohsiung Asia New Bay as an Example to Construct a Composite Recreational Knowledge Graph. Proceedings of the 34th Conference on Computational Linguistics and Speech Processing (ROCLING 2022), 155–163.
YAGO. (2025). YAGO: A high-quality knowledge base. Télécom Paris. Retrieved June 30, 2025 from https://yago-knowledge.org/
Zhang, M., & Wang, J. (2022). Global flood disaster research graph analysis based on literature mining. Applied Sciences, 12(6), 3066.
Zhou, B., Zou, L., Mostafavi, A., Lin, B., Yang, M., Gharaibeh, N., Cai, H., Abedin, J., & Mandal, D. (2022). VictimFinder: Harvesting rescue requests in disaster response from social media with BERT. Computers, Environment and Urban Systems, 95, 101824.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98966-
dc.description.abstract台灣深受自然災害影響,每當災害發生時,即時且適當地應變係為重要任務,可以減少財物損失和人員傷亡。而社群媒體具有即時性的特色,同時擁有高度可及性,此外,所蒐集的社群媒體亦可成為歷史資訊。因此,如能有效運用社群媒體上的資訊,可以迅速反映來自民眾傳遞之災害發生時間、空間、事件和嚴重程度等訊息,同時在未來的備災時提供防災建議與參考,協助災害管理。然而,過去研究中較缺乏發展自動化獲得社群媒體中資訊並以標準化知識架構表示,以及表達來自群眾由下而上 (bottom-up)所建構之時空知識 。為改善前述研究缺口,本研究選擇使用社群媒體,自動化建構以標準框架表示知識的時空災害知識圖譜(spatio-temporal diaster knowledge graph)來表達災害知識語意,此外,將知識圖譜應用於災害知識查詢和推論,以支援災害管理。
本研究主要利用人工智慧模型 (artificial intelligence, AI)進行自然語言處理任務,將從社群媒體資源中萃取災害知識。本研究以臺灣最受歡迎之社群媒體平台之一的批踢踢實業坊 (PTT)為研究材料,同時,並以BERT (Bidirectional Encoder Representations from Transformers) 模型進行自然語言處理。在完成文本前處理後,首先透過指代消解任務 (ellipsis and coreference resolution),將社群媒體文字中缺漏之主詞和使用之代名詞,還原至原本的字詞以利後續知識圖譜的建構;接著根據建構的災害知識本體 (disaster ontology),訂定實體辨識和關係萃取應涵蓋之災害知識並整合,再依照訂定的規則,找出三元組並建構時空災害知識圖譜,並應用SPARQL語法和地理資訊系統操作進行災害知識語意查詢。成果評估方面,使用機器學習指標評估模型的性能,並和ChatGPT 建構成果比較衡量本研究之知識圖譜建構成果,並選定災害個案分析和官方報告比對來探討時空災害知識圖譜中可獲得之資訊特性。
研究結果顯示,結合指代消解、實體辨識和關係萃取之方法,可有效萃取社群媒體文字中的三元組,並建構成時空災害知識圖譜,同時也能以此圖譜內容進行知識查詢,並將其實際運用於地震及颱風的個案,瞭解不同災害之群眾討論內容差異,同時應用於災害管理。本研究所提出的方法可提升社群媒體資訊存取之效率,並補充以往缺乏的由下而上及時空相關知識。在實務應用層面,可運用災害知識和空間查詢應用於災害管理,作為災害救援人員或決策者提供在災害採取行動之建議。
zh_TW
dc.description.abstractNatural disasters have a profound impact on Taiwan, necessitating immediate and effective responses to minimize damage and casualties. Social media, with its real-time and highly accessible features, serves as a promising resource for disaster management. Moreover, data collected from social media can also serve as a valuable source of historical information. Therefore, effectively leveraging social media information can help reflect the time, location, events, and severity of disasters as reported by the public. Additionally, it can provide disaster preparedness suggestions and references for future disaster management. However, existing studies have not focused on developing automatic methods to extract information from social media into a knowledge representation format, as well as to express spatiotemporal knowledge constructed from bottom-up contributions by the public. This study aims to construct a spatio-temporal disaster knowledge graph (ST-DKG) for disaster semantic interpretation and disaster management from social media. In addition, the ST-DKG is applied to disaster knowledge queries and reasoning in geographic information systems, achieving a better solution and understanding in disaster management.
This study primarily utilizes artificial intelligence (AI) models for natural language processing. The study uses PTT, one of Taiwan's most popular social media platforms, and employs the BERT model for natural language processing. After completing text preprocessing, the study first restores omitted subjects and pronouns in social media texts through an ellipsis and coreference resolution task, facilitating subsequent knowledge graph construction. Then, based on the constructed disaster ontology, the study identifies and integrates disaster knowledge for entity recognition and relation extraction. It then follows defined rules to identify triples and construct the ST-DKG, applying SPARQL and geographic information system operations for disaster knowledge semantic querying.
For evaluation, machine learning metrics are used to assess the model's performance, and the ST-DKG results are compared with those generated by ChatGPT. The study also performs disaster case analysis and compares the findings with official reports to explore the characteristics of information obtainable from the ST-DKG.
The results show that by utilizing the techniques of coreference resolution, entity recognition, and relation extraction, it is feasible to obtain triples from social media texts, thereby enabling the construction of an ST-DKG. This knowledge graph enables knowledge querying. It can also be applied to the cases of earthquakes and typhoons to understand the differences in the content of public discussions on different disasters, and also use it in disaster management
This study proposes an automated method for processing social media information and constructing an ST-DKG, improving the efficiency of accessing social media information and supplementing the previously lacking bottom-up and spatiotemporal knowledge. In practical applications, disaster knowledge and spatial queries can be applied to disaster management, contributing to providing disaster workers or authorities with the most appropriate actions in disasters.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-08-20T16:28:00Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-08-20T16:28:00Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents口試委員審定書 i
誌謝 ii
摘要 iii
Abstract v
Table of Contents vii
List of Figures x
List of Tables xiv
List of Acronyms xv
Chapter 1. Introduction 1
1.1 Background and motivation 1
1.2 Aim and objectives 4
Chapter 2. Literature Review 7
2.1 Disaster management based on social media texts 7
2.2 Disaster knowledge representation 10
2.2.1 Disaster ontology 11
2.2.2 Disaster knowledge graph 12
2.3 Construction of knowledge graph 14
Chapter 3. Methods 18
3.1 Materials and data preprocessing 19
3.2 Ontology construction 21
3.3 Knowledge graph construction 24
3.3.1 Ellipsis and coreference resolution 25
3.3.2 Entity recognition 28
3.3.3 Relation extraction 31
3.3.4 SPO triples extraction 31
3.3.5 Knowledge integration 33
3.4 Evaluation 37
3.4.1 Model performance 37
3.4.2 Evaluation of knowledge graph 39
Chapter 4. Results and Discussion 40
4.1 Model experimental results 40
4.1.1 Ellipsis detection 40
4.1.2 Ellipsis and coreference resolution 41
4.1.3 Entity recognition 42
4.2 Spatio-temporal disaster knowledge graph results and disater management 44
4.3 Case study on disaster management using ST-DKG 48
4.3.1 Hualien earthquake 2024 50
4.3.2 Pacific typhoon season 2019 79
4.3.3 Pacific typhoon season 2024 98
4.4 Evaluation and discussion 111
4.4.1 Model 112
4.4.2 ST-DKG 114
4.4.3 Discussion of case study 120
4.5 Limitations 125
Chapter 5. Conclusions and Future Work 126
Data and Software Availability 128
Grants 129
References 130
Appendix 137
-
dc.language.isoen-
dc.subject社群媒體zh_TW
dc.subject時空災害知識圖譜zh_TW
dc.subject災害管理zh_TW
dc.subject自然語言處理zh_TW
dc.subjectdisaster managementen
dc.subjectnatural language processingen
dc.subjectsocial mediaen
dc.subjectspatio-temporal disaster knowledge graphen
dc.title運用社群媒體建置時空災害知識圖譜於災害管理zh_TW
dc.titleThe Development of Spatio-temporal Disaster Knowledge Graph for Disaster Management using Social Mediaen
dc.typeThesis-
dc.date.schoolyear113-2-
dc.description.degree碩士-
dc.contributor.coadvisor莊昀叡zh_TW
dc.contributor.coadvisorRay Y. Chuangen
dc.contributor.oralexamcommittee梁文宗;馬偉雲;張子瑩zh_TW
dc.contributor.oralexamcommitteeWen-Tzong Liang;Wei-Yun Ma;Tzu-Yin Changen
dc.subject.keyword時空災害知識圖譜,社群媒體,自然語言處理,災害管理,zh_TW
dc.subject.keywordspatio-temporal disaster knowledge graph,social media,natural language processing,disaster management,en
dc.relation.page137-
dc.identifier.doi10.6342/NTU202501936-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2025-08-15-
dc.contributor.author-college理學院-
dc.contributor.author-dept地理環境資源學系-
dc.date.embargo-lift2025-08-21-
顯示於系所單位:地理環境資源學系

文件中的檔案:
檔案 大小格式 
ntu-113-2.pdf6.99 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved