Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 地質科學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98964
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor羅立zh_TW
dc.contributor.advisorLi Loen
dc.contributor.author李鍶政zh_TW
dc.contributor.authorSi-Jing Leeen
dc.date.accessioned2025-08-20T16:27:31Z-
dc.date.available2025-08-21-
dc.date.copyright2025-08-20-
dc.date.issued2025-
dc.date.submitted2025-08-13-
dc.identifier.citation傅沂帆(2024)。使用生態系統服務衡量紅樹林作為以自然為本的解決方案之潛力—以關渡紅樹林為例(碩士論文,國立臺灣師範大學)。
洪維屏、羅冠顯、李俊穎(2022)。臺北港鄰近海域歷年地形變遷特性分析(技術報告)。交通部運輸研究所。
黃日聖(2016)。紅樹林疏伐對碳吸存之影響(碩士論文,國立中興大學生命科學系)。
何佳穎(2012)。南台灣紅樹林濕地碳吸存能力之調查及估算(碩士論文,嘉南藥理科技大學環境工程與科學系)。
李世博(2015)。台南七股紅樹林碳收支模式(碩士論文,國立中興大學生命科學系)。
李奕廷(2014)。淡水河浮游生物對水體有機碳收支的影響(碩士論文,國立中興大學生命科學系)。
李晨華(2013)。淡水河沿岸退潮後底棲生物群集生產量與呼吸量(碩士論文,國立中興大學生命科學系)。
林俊全、鄭宏祺、鄭遠昌(2012)。台江國家公園自然地景資源調查成果報告。台江國家公園管理處。
林俊全、鄭宏祺、鄭遠昌(2012)。台江國家公園幻燈片專輯(二十八)。國立臺灣大學地理環境資源學系。
林幸助、盛強(2014)。基於生態學研究制定濕地保育策略:以台灣七股濕地為例。《中國環境管理》,6(6),64–68。
林幸助(2019)。108 年度紅樹林生態系調查計畫。國立中興大學(海洋保育署委託計畫報告)。
林幸助(2021)。臺灣沿海重要碳匯生態系統調查與評估計畫成果報告。中華民國海洋委員會海洋保育署。
林幸助(2023)。紅樹林皆伐後之生態系服務效益評估—以濁水溪口為例(研究計畫專案報告)。
吳欣恂、林幸助(2021)。水筆仔與海茄苳碳收支模式(碩士論文,國立中興大學)。
吳秉立、羅冠益、高俊楨、林振斌、蘇怡芯(2019)。量化臺灣沿岸不同類型棲地土壤碳匯能力(研究報告)。國立臺灣大學地理環境資源學系。
邱郁文、黃大駿、孫建平(2020)。台江國家公園曾文溪口濕地核心區棲地評估與保育研究計畫(研究報告)。國立嘉義大學。
葉秋好(2005)。台灣沿海濕地草澤之植群生態研究(碩士論文,國立中山大學生物科學系)。
賴聖耀、李豐博、陳志芳(1997)。安平港長期性地下水位變化與分層地層下陷監測研究(技術報告)。大地工程組。
張暉、唐婧、賀炬成、郭丹韻、許培容、杜謙泰、周勝(2024)。三種紅樹林土壤有機碳分佈特徵及影響因素相關分析。《濕地科學與管理》,20(6),43–48。
陳柏宏(2014)。淡水河紅樹林及草澤植物的碳儲存量與碳收支(碩士論文,國立中興大學生命科學系)。
曾祥霖(2011)。水生植物與大漢溪人工濕地污水處理能力關係之探討(碩士論文,國立中興大學)。
許和晏、楊謹瑜(2024)。臺灣紅樹林與鹽沼土壤碳封存能力差異:以新竹新豐地區與臺中高美溼地為例(第64屆中小學科學展覽會作品說明書)。
周孟群、林幸助(2019)。量化紅樹林地下部細根生物量。《濱海濕地學刊》,8(1),41–50。
周孟群(2021)。紅樹林細根生物量對碳收支之貢獻(碩士論文,國立中興大學生命科學系)。
童莉婷(2013)。高美濕地土壤碳存量之時空變化(博士論文,國立中興大學生命科學系)。
鄭啟仲、王亞男(1998)。台灣沿海濕地之介紹及其面臨問題之探討。《國立臺灣大學農學院實驗林研究報告》,12,213–221。
臺南市政府(2020)。臺南市氣候變遷調適計畫(2020 修正版)。臺南市政府。
Allais, L., Thibodeau, B., Khan, N. S., Crowe, S. A., Cannicci, S., & Not, C. (2023). Salinity, mineralogy, porosity, and hydrodynamics as drivers of carbon burial in urban mangroves from a megacity. Science of the Total Environment, 912, Article 168955. https://doi.org/10.1016/j.scitotenv.2023.168955
Alongi, D. M. (2012). Carbon sequestration in mangrove forests. Carbon Management, 3(3), 313–322. https://doi.org/10.4155/cmt.12.20
Alongi, D. M. (2014). Carbon cycling and storage in mangrove forests. Annual Review of Marine Science, 6, 195–219. https://doi.org/10.1146/annurev-marine-010213-135020
Arias-Ortiz, A., Masqué, P., Garcia-Orellana, J., Serrano, O., Mazarrasa, I., Marbà, N., Duarte, C. M. (2018). Reviews and syntheses: 210Pb-derived sediment and carbon accumulation rates in vegetated coastal ecosystems—Setting the record straight. Biogeosciences, 15, 6791–6818. https://doi.org/10.5194/bg-15-6791-2018
Baskaran, M., Miller, C. J., Kumar, A., Andersen, E., Selegean, J. P., Creech, C. T., & Barkach, J. (2015). Sediment accumulation rates and sediment dynamics using five different methods in a well-constrained impoundment: Case study from Union Lake, Michigan. Journal of Great Lakes Research, 41(4), 607–617. https://doi.org/10.1016/j.jglr.2015.03.013
Bao, R., McIntyre, C., Zhao, M., Zhu, C., Kao, S.-J., & Eglinton, T. I. (2023). Widespread dispersal and aging of organic carbon in shallow marginal seas. Geology, 51(10), 1039–1043. https://doi.org/10.1130/G50690.1
Bouillon, S., Borges, A. V., Castañeda-Moya, E., Diele, K., Dittmar, T., Duke, N. C., ... & Rivera-Monroy, V. H. (2008). Mangrove production and carbon sinks: A revision of global budget estimates. Global Biogeochemical Cycles, 22(2). https://doi.org/10.1029/2007GB003052
Bouillon, S., Dahdouh-Guebas, F., Rao, A. V. V. S., Koedam, N., & Dehairs, F. (2003). Sources of organic carbon in mangrove sediments: Variability and possible ecological implications. Hydrobiologia, 495, 33–39.
Burnett, W. C., Bidorn, B., & Wang, Y. (2023). Can 210Pb be used as a paleo-storm proxy? Quaternary Science Reviews, 315, Article 108242.https://doi.org/10.1016/j.quascirev.2023.108242
Barbier, E. B., S. D. Hacker, C. Kennedy, E. W. Koch, A. C. Stier, and B. R. Silliman. 2011. The value of estuarine and coastal ecosystem services. Ecological Monographs 81: 169–193.
Chen, C.-C., Hsu, M.-H., Huang, M.-Y., Yang, Z.-W., Yang, C.-M., & Huang, W.-D. (2008). Effects of common reed (Phragmites communis (L.) Trin) on soil organic carbon pool in Guandu Nature Reserve. Weed Science Bulletin, 29(1), 11–22. https://doi.org/10.6274/wssroc-2008-029(1)-011
Chen, Z., Luo, J., Lin, Z., & Chen, J. (1997). Preliminary study on sedimentation rates of lakes and reservoirs in Taiwan. Oceanologia et Limnologia Sinica, 28(6), 63–72.
Chatting, M., Al-Maslamani, I., Walton, M., Skov, M. W., Kennedy, H., Husrevoglu, Y. S., & Le Vay, L. (2022). Future mangrove carbon storage under climate change and deforestation. Frontiers in Marine Science, 9, Article 781876. https://doi.org/10.3389/fmars.2022.781876
Cahoon, D. R., Lynch, J. C., Perez, B. C., Segura, B., Holland, R. D., Stelly, C., ... & Hensel, P. (2002). High-precision measurements of wetland sediment elevation: II. The rod surface elevation table. Journal of Sedimentary Research, 72(5), 734–739. https://doi.org/10.1306/020702720734
Ding,F., Huang,Y., Sun,W., Jiang,G., & Chen,Y. (2014). Decomposition of organic carbon in fine soil particles is likely more sensitive to warming than in coarse particles: An incubation study with temperate grassland and forest soils in Northern China. https://doi.org/10.1371/journal.pone.0095348
DelVecchia, A. G., Bruno, J. F., Benninger, L., Alperin, M., Banerjee, O., & Morales, J. D. (2014). Organic carbon inventories in natural and restored Ecuadorian mangrove forests. PeerJ, 2, e388. https://doi.org/10.7717/peerj.388
Davidson, E. A., & Janssens, I. A. (2006). Temperature sensitivity of soil carbon decomposition and feedbacks to climate change. Nature, 440(7081), 165–173. https://doi.org/10.1038/nature04514
Foster, N., Jones, A., Serrano, O., Lafratta, A., Lavery, P., Van Dijk, K., & Waycott, M. (2023). A new evidence base to document millennial changes in coastal vegetation. Research Square. https://doi.org/10.21203/rs.3.rs-3378191/v1
Gao, Y., Zhou, J., Wang, L., Guo, J., Feng, J., Wu, H., & Lin, G. (2019). Distribution patterns and controlling factors for soil organic carbon in four mangrove forests of China. Global Ecology and Conservation, 17, e00575. https://doi.org/10.1016/j.gecco.2019.e00575
Guo, C., Loh, P. S., Hu, J., Chen, Z., Pradit, S., Oeurng, C., & Wang, J. (2024). Factors influencing mangrove carbon storage and its response to environmental stress. Frontiers in Marine Science, 11, 1410183. https://doi.org/10.3389/fmars.2024.1410183
Hicks Pries, C. E., Ryals, R., Zhu, B., Min, K., Cooper, A., Goldsmith, S., & Berhe, A. A. (2023). The deep soil organic carbon response to global change. Annual Review of Ecology, Evolution, and Systematics, 54, 375–401. https://doi.org/10.1146/annurev-ecolsys-102320-085332
Hughes-Allen, L., Bouchard, F., Hatté, C., Meyer, H., Pestryakova, L. A., Diekmann, B., Subetto, D. A., & Biskaborn, B. K. (2021). Fourteen-thousand-year carbon accumulation dynamics. Frontiers in Earth Science, 9, 710257. https://doi.org/10.3389/feart.2021.710257
Howard, J., Hoyt, S., Isensee, K., Pidgeon, E., & Telszewski, M. (Eds.). (2014). Coastal blue carbon: Methods for assessing carbon stocks and emissions factors in mangroves, tidal salt marshes, and seagrass meadows. Conservation International; Intergovernmental Oceanographic Commission of UNESCO; International Union for Conservation of Nature. https://www.thebluecarboninitiative.org/manual
Howard, J., Hoyt, S., Isensee, K., Telszewski, M., & Pidgeon, E. (Eds.). (2017). Coastal blue carbon: Methods for assessing carbon stocks and emissions factors in mangroves, tidal salt marshes, and seagrass meadows (2nd ed.). Conservation International.
Intergovernmental Panel on Climate Change (IPCC). (2014). Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. https://www.ipcc.ch/report/ar5/syr/
Jakovac, C. C., Latawiec, A. E., Lacerda, E., Lucas, I. L., Korys, K. A., Iribarrem, A., & Duarte, C. M. (2020). Costs and carbon benefits of mangrove conservation and restoration: A global analysis. Ecological Economics, 176, Article 106758. https://doi.org/10.1016/j.ecolecon.2020.106758
Janousek, C. N., Krause, J. R., Drexler, J. Z., Buffington, K. J., et al. (2025). Blue carbon stocks along the Pacific coast of North America are mainly driven by local rather than regional factors. Global Biogeochemical Cycles, 39(3), e2024GB008239. https://doi.org/10.1029/2024GB008239
Kumar, A., & Sharma, M. P. (2014). Review of methodology for estimation of labile organic carbon in reservoirs and lakes for greenhouse-gas emission. Journal of Materials and Environmental Science, 5(3), 653–660.
Kristensen, E., Bouillon, S., Dittmar, T., & Marchand, C. (2008). Organic carbon dynamics in mangrove ecosystems: A review. Aquatic Botany, 89(2), 201–219. https://doi.org/10.1016/j.aquabot.2007.12.005
Kauffman, J. B., Perry, L., Hughell, D., & Fortenbery, D. (2017). The disproportionate value of mangrove forests as a global carbon storehouse. Ecosphere, 8(6), e01869. https://doi.org/10.1002/ecs2.1869
Kauffman, J. B., Adame, M. F., Arifanti, V. B., Schile-Beers, L. M., Bernardino, A. F., Bhomia, R. K., Donato, D. C., Feller, I. C., Ferreira, T. O., Garcia, M. D. C. J., MacKenzie, R. A., Megonigal, J. P., Murdiyarso, D., Simpson, L., & Hernández Trejo, H. (2020). Total ecosystem carbon stocks of mangroves across broad global environmental and physical gradients. Ecological Monographs, 90(2), e01405. https://doi.org/10.1002/ecm.1405
Lee, S.-A., Kim, T.-H., & Kim, G. (2020). Tracing terrestrial versus marine sources of dissolved organic carbon in a coastal bay using stable carbon isotopes. Biogeosciences, 17(1), 135–144. https://doi.org/10.5194/bg-17-135-2020
Li, J., Hu, L., Bai, Y., Du, J., Bi, N., Wu, X., & Yang, Z. (2024). Coupled impact of climate change and anthropogenic activity on terrestrial organic carbon accumulation in a river-dominated coastal margin. Journal of Geophysical Research: Oceans, 129, e2024JC021114. https://doi.org/10.1029/2024JC021114
Li, S.-B., Chen, P.-H., Huang, J.-S., Hsueh, M.-L., Hsieh, L.-Y., Lee, C.-L., & Lin, H.-J. (2018). Factors regulating carbon sinks in mangrove ecosystems. Global Change Biology, 24(9), 4195–4210. https://doi.org/10.1111/gcb.14322
Li, Y., Long, C., Dai, Z., & Zhou, X. (2022). Mangrove sediment organic carbon storage and sources in relation to forest age and position along a deltaic salinity gradient. Biogeosciences, 19, 1571–1585. https://doi.org/10.5194/bg-19-1571-2022
Li, Y., Long, C., Dai, Z., & Zhou, X. (2024). Pattern of total organic carbon in sediments within the mangrove ecosystem. Frontiers in Marine Science, 11, 1428229. https://doi.org/10.3389/fmars.2024.1428229
Lin, H.-T., Yang, J.-I., Wu, Y.-T., Shiau, Y.-J., Lo, L., & Yang, S.-H. (2025). The spatiotemporal variations of marine nematode populations may serve as indicators of changes in marine ecosystems. Marine Pollution Bulletin, 211, 117373. https://doi.org/10.1016/j.marpolbul.2024.117373
Lin, C.-W., Lin, W.-J., Ho, C.-W., Kao, Y.-C., Yong, Z.-J., & Lin, H.-J. (2024). Flushing emissions of methane and carbon dioxide from mangrove soils during tidal cycles. Science of the Total Environment, 919, 170768. https://doi.org/10.1016/j.scitotenv.2024.170768
Liu, W.-C., Hsu, M.-H., Li, J.-H., & Kuo, A. Y. (2005). The effect of freshwater discharge on tidal propagation in Danshuei River Estuary. Journal of Taiwan Agricultural Engineering, 51(1), 69–79. https://doi.org/10.29974/jtae.200503.0007
Luo, H., Liu, S., Ren, Y., Jiang, Z., Wu, Y., Zhang, X., & Huang, X. (2022). Eutrophication decreases Halophila beccarii plant organic carbon contribution to sequestration potential. Frontiers in Marine Science, 9, 986415. https://doi.org/10.3389/fmars.2022.986415
Lamb, A. L., Eglinton, G., & Rigg, A. (2006). The effect of late season corn (C₄) straw additions on δ¹³C signatures of total organic carbon and bulk lipid fractions in arable soils. Chemosphere, 64(7), 1202–1213. https://doi.org/10.1016/j.chemosphere.2005.12.007
Lovelock, C. E., Atwood, T., Baldock, J., Duarte, C. M., Hickey, S., Lavery, P. S., ... & Macreadie, P. I. (2015). Assessing the risk of carbon dioxide emissions from blue carbon ecosystems. Frontiers in Ecology and the Environment, 13(2), 73–79. https://doi.org/10.1890/140069
Ma, H., Xiao, X., Ding, Y., Feng, X., Chen, W., Sun, L., & Zhao, M. (2023). Carbon stocks in the mud areas of the Chinese marginal seas. Frontiers in Marine Science, 10, 1282891. https://doi.org/10.3389/fmars.2023.1282891
Marchio, D. A., Jr., Savarese, M., Bovard, B., & Mitsch, W. J. (2016). Carbon sequestration and sedimentation in mangrove swamps influenced by hydrogeomorphic conditions and urbanization in southwest Florida. Forests, 7(6), 116. https://doi.org/10.3390/f7060116
Masselink, G., & Jones, R. B. (2024). Long-term accretion rates in UK salt marshes derived from elevation difference between natural and reclaimed marshes. Marine Geology, 467, Article 107202. https://doi.org/10.1016/j.margeo.2023.107202
Matsui, N., Meepol, W., & Chukwamdee, J. (2015). Soil organic carbon in mangrove ecosystems with different vegetation and sedimentological conditions. Journal of Marine Science and Engineering, 3(4), 1404–1424. https://doi.org/10.3390/jmse3041404
Murdiyarso, D., Sasmito, S. D., Sillanpää, M., MacKenzie, R., & Gaveau, D. (2021). Mangrove selective logging sustains biomass carbon recovery, soil carbon, and sediment. Scientific Reports, 11, 12325. https://doi.org/10.1038/s41598-021-91502-x
Meyers, P. A. (1994). Preservation of elemental and isotopic source identification of sedimentary organic matter. Chemical Geology, 114(3–4), 289–302. https://doi.org/10.1016/0009-2541(94)90059-0
McLeod, K. W., G. L. Chmura, S. Bouillon, R. Salm, M. Bjork, C. M. Duarte, C. E. Lovelock, H. Schlesinger, and B. R. Silliman. 2011. A blueprint for blue carbon: toward an improved understanding of the role of vegetated coastal habitats in sequestering CO2. Frontiers in Ecology and the Environment 9: 552–560.
Middelburg, J. J., & Levin, L. A. (2009). Coastal hypoxia and sediment biogeochemistry. Biogeosciences, 6(7), 1273–1293. https://doi.org/10.5194/bg-6-1273-2009
Matus, F. J., et al. (2021). Fine silt and clay content is the main factor defining maximal C and N accumulations in soils: A meta-analysis. Scientific Reports, 11, 6438. https://doi.org/10.1038/s41598-021-84821-6
Nguyen, P. T., Tue, N. T., Quy, T. D., & Thai, N. D. (2016). Quantifying organic carbon storage and sources in sediments of Dong Rui mangrove forests, Tien Yen district, Quang Ninh province using carbon stable isotope. Vietnam Journal of Earth Sciences, 38(4), 317–326. https://doi.org/10.15625/0866-7187/38/4/8713
Nelson, W. G. (2020). A quantitative assessment of organic carbon content as a regional sediment-condition indicator. Ecological Indicators, 114, 106318. https://doi.org/10.1016/j.ecolind.2020.106318
Nuraya, T., & Agawaman, L. P. I. (2025). Effect of river organic carbon input in mangrove sediment. Jurnal Penelitian Pendidikan IPA, 11(2), 1043–1052. https://doi.org/10.29303/jppipa.v11i2.10158
Nakagawa, S., & Cuthill, I. C. (2007). Effect size, confidence interval and statistical significance: A practical guide for biologists. Biological Reviews, 82(4), 591–605. https://doi.org/10.1111/j.1469-185X.2007.00027.x
Nie, S., Ouyang, X., Wang, W., Zhu, Z., Guo, F., Yang, Z., & Lee, S. Y. (2023). Sediment CO₂ flux from a mangrove in southern China: Is it controlled by spatiotemporal, biotic or physical factors? Forests, 14(4), Article 782. https://doi.org/10.3390/f14040782
Ouyang, X., & Lee, S. Y. (2014). Updated estimates of carbon accumulation rates in coastal marsh sediments. Biogeosciences, 11, 5057–5071. https://doi.org/10.5194/bg-11-5057-2014
Passos, T., Penny, D., Barcellos, R., Nandan, S. B., Suresh Babu, D. S., Santos, I. R., & Sanders, C. J. (2022). Increasing carbon, nutrient and trace metal accumulation driven by development in a mangrove estuary in South Asia. Science of the Total Environment, 832, 154900. https://doi.org/10.1016/j.scitotenv.2022.154900
Pérez, A., Libardoni, B. G., & Sanders, C. J. (2018). Factors influencing organic carbon accumulation in mangrove ecosystems. Biology Letters, 14(8), 20180237. https://doi.org/10.1098/rsbl.2018.0237
Price, J. T., and R. F. Warren. (2016). Review of the potential of “blue carbon” activities to reduce emissions.
Perdue, E. M., & Koprivnjak, J.-F. (2007). Using the C/N ratio to estimate organic nitrogen content in aquatic dissolved organic matter. Marine Chemistry, 103(3–4), 333–343. https://doi.org/10.1016/j.marchem.2006.12.020
Perera, K. A. R. S., & Amarasinghe, M. D. (2019). Carbon Sequestration Capacity of Mangrove Soils in Micro Tidal Estuaries and Lagoons: A Case Study from Sri Lanka. Geoderma, 347, 80-89. https://doi.org/10.1016/j.geoderma.2019.03.041
Qin, G., Zhang, J., Zhou, J., Lu, Z., & Wang, F. (2023). Soil carbon stock and potential carbon storage in the mangrove forests of Guangdong Province. Tropical Geography, 43(1), 23–30. https://doi.org/10.13284/j.cnki.rddl.003606
Qiu, H., Zhang, J., Zhou, J., Lu, Z., & Wang, F. (2023). Effect of biochar on labile organic carbon fractions and soil carbon pool management index. Agronomy, 13(5), 1385. https://doi.org/10.3390/agronomy13051385
Reed, D., Chavez, S., Castañeda-Moya, E., Oberbauer, S. F., Troxler, T., & Malone, S. (2025). Resilience to hurricanes is high in mangrove blue carbon forests. Global Change Biology, 31, e70124. https://doi.org/10.1111/gcb.70124
Ramsar Convention Secretariat. (1971). The Ramsar Convention on Wetlands of International Importance especially as Waterfowl Habitat. Ramsar Bureau. https://www.ramsar.org
Raymond, P. A., & Bauer, J. E. (2001). Riverine export of aged terrestrial organic matter to the North Atlantic Ocean. Nature, 409(6819), 497–500. https://doi.org/10.1038/35054034
Rovai, A. S., Twilley, R. R., Castañeda-Moya, E., Riul, P., Cifuentes-Jara, M., Manrow-Villalobos, M., Horta, P. A., Simonassi, J. C., Fonseca, A. L., & Pagliosa, P. R. (2018). Global controls on carbon storage in mangrove soils. Nature Climate Change, 8(6), 534–538. https://doi.org/10.1038/s41558-018-0162-5
Sanders, L. M., Taffs, K., Stokes, D., Sanders, C. J., Enrich-Prast, A., Amora-Nogueira, L., & Marotta, H. (2018). Historic carbon burial spike in an Amazon floodplain lake linked to riparian deforestation near Santarém, Brazil. Biogeosciences, 15(2), 447–455. https://doi.org/10.5194/bg-15-447-2018
Sanders, C. J., Mather, D. T., Tait, D. R., Williams, D., Holloway, C., Sippo, J. Z., & Santos, I. R. (2016). Are global mangrove carbon stocks driven by rainfall? Journal of Geophysical Research: Biogeosciences, 121(10), 2600-2609. https://doi.org/10.1002/2016JG003510
Sanders, C. J., Eyre, B. D., Santos, I. R., Machado, W., Luiz-Silva, W., Smoak, J. M., & Savarese, M. (2014). Elevated rates of organic carbon, nitrogen, and phosphorus accumulation in a highly impacted mangrove wetland. Geophysical Research Letters, 41, 2475–2480. https://doi.org/10.1002/2014GL059789
Sanders, C. J., Smoak, J. M., Naidu, A. S., Sanders, L. M., & Patchineelam, S. R. (2010). Organic carbon burial in a mangrove forest, margin and intertidal mud flat. Estuarine, Coastal and Shelf Science, 90, 168–172. https://doi.org/10.1016/j.ecss.2010.08.013
Sefton, J., Woodroffe, S., & Ascough, P. (2022). Reliability of mangrove radiocarbon chronologies: A case study from Mahé, Seychelles. The Holocene, 32, 1415–1427. https://doi.org/10.1177/09596836221080756
Shen, Z., Wang, H., Chen, Y., Cai, Y., & Yi, L. (2024). Sedimentary dynamics in the southern Mariana Trench and its controlling factors in the past 440 kyr. Frontiers in Marine Science, 11, 1463564. https://doi.org/10.3389/fmars.2024.1463564
Song, X., Dong, J., Wang, H., Xie, H., Yu, Y., Geng, L., & Du, Y. (2023). Factors influencing the distribution of organic carbon in four different coastal sedimentary environments. Journal of Soils and Sediments, 23(4), 1539–1551. https://doi.org/10.1007/s11368-022-03423-5
Szmytkiewicz, A., & Zalewska, T. (2014). Sediment deposition and accumulation rates determined by sediment trap and 210Pb isotope methods in the Outer Puck Bay (Baltic Sea). Oceanologia, 56(1), 85–106. https://doi.org/10.5697/oc.56-1.085
Schober, P., Boer, C., & Schwarte, L. A. (2018). Correlation coefficients: Appropriate use and interpretation. Anesthesia & Analgesia, 126(5), 1763–1768. https://doi.org/10.1213/ANE.0000000000002864
Saintilan, N., Rogers, K., Kelleway, J. J., Ens, E., & Sloane, D. R. (2022). Surface elevation tables for coastal wetland monitoring. In C. M. Duarte, I. J. Losada, & I. E. Hendriks (Eds.), Handbook of Coastal Ecosystems and Climate Change (pp. 181–194). Springer. https://doi.org/10.1007/978-3-030-91057-9_12
Suello, R. H., Hernández, S. L., Bouillon, S., Belliard, J.-P., Van der Broek, M., & Temmerman, S. (2022). Mangrove sediment organic carbon storage and sources in relation to forest age and position along a deltaic salinity gradient. Biogeosciences, 19, 1571–1585 https://doi.org/10.5194/bg-19-1571-2022
Smoak, J. M., Breithaupt, J. L., Smith, T. J., III, & Sanders, C. J. (2013). Sediment accretion and organic carbon burial relative to sea-level rise and storm events in two mangrove forests in Everglades National Park. Catena, 104, 58–66. https://doi.org/10.1016/j.catena.2012.10.009
Temmerman, S., Horstman, E. M., Krauss, K. W., Mullarney, J. C., Pelckmans, I., & Schoutens, K. (2023). Marshes and mangroves as nature-based coastal storm buffers. Annual Review of Marine Science, 15, 95–118. https://doi.org/10.1146/annurev-marine-040422-092951
Tieszen, L. L., & Boutton, T. W. (1988). Stable carbon isotopes in terrestrial ecosystem research. In P. W. Rundel, J. R. Ehleringer, & K. A. Nagy (Eds.), Stable isotopes in ecological research (pp. 167–195). Springer. https://doi.org/10.1007/978-1-4612-3498-2_7
UNEP. 2014. The importance of mangroves to people: a call to action ( Bochove, E. Sullivan, and T. Nakamura, editors). United Nations Environment Programme World Conservation Monitoring Centre, Cambridge, UK., 128pp.
Walker, B. D., Beaupré, S. R., Griffin, S., & Druffel, E. R. M. (2019). UV photochemical oxidation and extraction of marine dissolved organic carbon at UC Irvine: Status, surprises, and methodological recommendations. Radiocarbon, 61(5), 1603–1617. https://doi.org/10.1017/rdc.2019.9
Wang, Q., Zou, J., Feng, X., Cui, Y., Dou, R., Dong, Z., & Shi, X. (2025). Spatial variations in sedimentary fluxes and paleoenvironment in the Sea of Okhotsk over the last 30 kyr. Quaternary Science Reviews, 355, Article 109251. https://doi.org/10.1016/j.quascirev.2025.109251
Weston, N. B., & Joye, S. B. (2005). Temperature-driven decoupling of key phases of organic matter degradation in marine sediments. Proceedings of the National Academy of Sciences of the United States of America, 102(47), 17036–17040. https://doi.org/10.1073/pnas.0508798102
Wang, H., Xu, X., Wang, Z., Cao, R., Zheng, B., Song, S., Jiang, Y., Zhu, Q., & Yang, W. (2022). Abnormal litter induced by typhoon disturbances had higher rates of mass loss and carbon release than physiological litter in coastal subtropical urban forest ecosystems. Forests, 13(11), 1819. https://doi.org/10.3390/f13111819
Wu, T., Guo, J., Li, G., Jin, Y., Zhao, W., Lin, G., Luo, F.-L., Zhu, Y., Jia, Y., & Wen, L. (2025). Soil organic carbon contents and their major influencing factors in mangrove tidal flats: A comparison between estuarine and non-estuarine areas. Ecological Processes, 14, 15. https://doi.org/10.1186/s13717-025-00581-5
Ward, R. D., Friess, D. A., Day, R. H., & Mackenzie, R. A. (2016). Impacts of climate change on mangrove ecosystems: A region-by-region overview. Ecosystem Health and Sustainability, 2(4), e01211. https://doi.org/10.1002/ehs2.1211
Woodroffe, C. D., Rogers, K., McKee, K. L., Lovelock, C. E., Mendelssohn, I. A., & Saintilan, N. (2016). Mangrove sedimentation and response to relative sea-level rise. Annual Review of Marine Science, 8, 243–266. https://doi.org/10.1146/annurev-marine-122414-034025
Woodroffe, S. A., Long, A. J., Punwong, P., Selby, K., Bryant, C., & Marchant, R. (2015). Radiocarbon dating of mangrove sediments to constrain Holocene relative sea-level change on Zanzibar in the southwest Indian Ocean. The Holocene, 25(5), 820–831. https://doi.org/10.1177/0959683615571422
Xin, K., Yan, K., Gao, C., & Li, Z. (2018). Carbon storage and its influencing factors in Hainan Dongzhagang mangrove wetlands. Marine and Freshwater Research, 69(5), 771–779. https://doi.org/10.1071/mf17101
Yang, J., Gao, J., Liu, B., & Zhang, W. (2014). Sediment deposits and organic carbon sequestration along mangrove coasts of the Leizhou Peninsula, southern China. Estuarine, Coastal and Shelf Science, 136, 3–10. https://doi.org/10.1016/j.ecss.2013.11.020
Zhao, F., Wu, Y., Hui, J., Sivakumar, B., Meng, X., & Liu, S. (2021). Projected soil organic carbon loss in response to climate warming and soil water content in a loess watershed. Carbon Balance and Management, 16, Article 24. https://doi.org/10.1186/s13021-021-00187-2
Zhang, Y., Xia, Z., Zuo, Y., Ding, J., Wang, J., & Qu, W. (2024). The increase of particle size shifts the biogeochemical cycle functions of mineral-associated microorganisms and weakens the mineral-associated organic carbon sink in mangrove soils. Applied and Environmental Microbiology, 90(10), e01272-24. https://doi.org/10.1128/aem.01272-24
Zar, J. H. (2005). Spearman rank correlation. In P. Armitage & T. Colton (Eds.), Encyclopedia of biostatistics (2nd ed.). John Wiley & Sons. https://doi.org/10.1002/0470011815.b2a15150
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98964-
dc.description.abstract在全球暖化與氣候變遷日益加劇的情勢下,如何有效降低大氣中二氧化碳濃度並尋求長期穩定的碳匯機制,已成為環境科學領域的重要課題。紅樹林因具厭氧沉積環境與光合作用帶來的高生產力,能促進有機碳之長期累積與儲存,因而在全球範圍內被視為藍碳系統中最具潛力的碳匯之一。尤以紅樹林地下部沉積物在分解速率較低且不易被分解的條件下,能維持高含量的有機碳並延長封存時間。本研究旨在定量評估臺灣西部紅樹林區域沉積物之有機碳含量,並進一步探討其控制因子與對比國際上其他紅樹林沉積物有機碳含量。為達成此目標,本研究選取臺灣西部由北至南之四處代表性紅樹林區域-關渡自然公園、挖子尾自然保留區、新豐濕地,以及台南安平四草鹽水溪濕地,採集沉積物岩芯樣本,並透過元素分析儀分別量測總有機碳(TOC)、總氮(TN)、總無機碳(TIC)、易揮發有機碳(LOC)及難降解有機碳(ROC),以量化各區域紅樹林沉積物的碳匯潛能。同時為釐清控制機制並佐證樣區間之差異,利用雷射繞射粒徑分析獲得沉積物之顆粒大小分布(黏土:<4 μm、粉砂:4–63 μm、極細砂與細沙:63–250 μm、中砂:>250 μm),並配合穩定碳同位素(δ¹³C)資料以闡明有機碳來源,並將測量數據進行Spearman相關係數矩陣以求各比值之間的關係。最後再配合氣候條件、風速、河川流量等的自然因素,以評估其對紅樹林沉積物有機碳含量之影響。
結果顯示淡水河口關渡純林岩芯 TOC 平均 1.18 %,岩芯δ¹³C 與 C/N 比值推測藻類來源特徵;淡水河左岸挖子尾TOC除了表層樣品1.49%,其餘平均僅 0.25 %, δ¹³C 與 C/N 比值推測也幾乎藻類來源特徵;新豐內陸樣區缺乏潮汐動力,沉積物以粗砂為主;粗顆粒的稀釋效應使總有機碳(TOC)平均僅 0.36 %。臨港沿岸升至 0.91 %;安平黏土至粉砂混合表層 TOC 最高 1.7%,無植被沙洲則僅 0.51 %。黏土+粉砂比例高的關渡與安平有助富集碳(r >0.4, p <0.01),而砂質環境(挖子尾、新豐內陸)則限制碳累積。LOC(易揮發有機碳)占 TOC 55–70 %,顯示臺灣紅樹林以易分解碳為主,長期封存潛能可能有限。
與國際資料相比,臺灣各樣區的 TOC 均顯著低於全球紅樹林沉積物 2.2 %的中位值(Kristensen et al., 2008),亦落後於東南亞泥質河口紅樹林普遍的 3–5 % 水準。全球紅樹林 0-100 cm 剖面平均 SOC 密度約 337 t C ha⁻¹,本研究各站估值僅約其三分之一。全球碳埋藏速率均值為 171 g C m⁻² yr⁻¹,而挖子尾僅 46.8 g C m⁻² yr⁻¹,僅達全球均值三分之一。上述落差顯示,除有機碳來源差異外,台灣紅樹林所處的高能量水動力環境與頻繁極端氣候事件同樣是限制有機碳累積的關鍵因素。
zh_TW
dc.description.abstractIn response to the escalating impacts of global warming and climate change, the urgent need to reduce atmospheric carbon dioxide concentrations and establish long term, stable carbon sequestration mechanisms has become a central focus in environmental science. Mangrove ecosystems, characterized by high primary productivity and anoxic sedimentary conditions resulting from tidal inundation, are recognized as highly effective blue carbon systems due to their capacity for substantial organic carbon accumulation and long-term storage. In particular, subsurface mangrove sediments exhibit high levels of organic carbon with relatively low decomposition rates, ensuring long-term sequestration. The present study quantitatively assesses the organic carbon content of mangrove sediments along Taiwan’s western coastline and investigates the primary environmental factors influencing carbon dynamics. Sediment cores were collected from four representative mangrove sites spanning north to south—Guandu Nature Park, Wazihwei Nature Reserve, Xinfeng Wetland, and Anping Wetland. An elemental analyzer was used to determine total organic carbon (TOC), total nitrogen (TN), total inorganic carbon (TIC), labile organic carbon (LOC), and refractory organic carbon (ROC), thereby evaluating the carbon sequestration potential of each region. To further elucidate carbon dynamics and inter-site variability, grain-sized distributions were measured using laser diffraction. Stable carbon isotope (δ¹³C) analysis was conducted to trace organic carbon sources. Measured data undergo Spearman correlation analysis to examine relationships among the calculated ratios. Climatic conditions, wind speed are incorporated to assess their influence on organic carbon content in mangrove sediments.
The results indicate that the pristine mangrove core from Guandu, has a mean total organic carbon (TOC) content of 1.18 %. Combined δ¹³C signatures and C/N ratios imply a predominantly algal origin. At Wazihwei on the left bank of the Tamsui River, TOC averages only 0.25 % throughout the core—apart from the surface sample 1.49 %—and δ¹³C and C/N likewise point to an almost exclusively algal source. In the inland sector of Xinfeng, where tidal forcing is absent and sediments are dominated by coarse sand, the dilution effect of large grain sizes reduces mean TOC to 0.36 %; values rise to 0.91 % along the adjacent coast. In Anping, surface TOC reaches 1.7 % in clay-to-silt mixtures, whereas the unvegetated sandbar contains only 0.51 %. High clay + silt fractions at Guandu and Anping favor carbon enrichment (r > 0.4, p < 0.01), while sandy settings (Wazihwei, inland Xinfeng) constrain carbon accumulation. Labile organic carbon (LOC) constitutes 55–70 % of TOC, suggesting that Taiwanese mangrove sediments are dominated by easily decomposed carbon fractions and therefore have limited long-term storage potential.
Compared to international data, TOC values from all Taiwan sampling sites were significantly lower than the global mangrove sediment median value of 2.2% reported by Kristensen et al. (2008), and also fell behind the typical 3-5% levels found in Southeast Asian muddy estuarine mangroves. The global average soil organic carbon (SOC) density for 0-100 cm profiles in mangroves is approximately 337 t C ha⁻¹, while estimated values from study sites were only about one-third of this figure.The global carbon accumulation rate (CAR) averages 171 g C m⁻² yr⁻¹, while Wazihwei achieved only 46.8 g C m⁻² yr⁻¹, reaching merely one-third of the global average. These disparities indicate that beyond differences in organic carbon sources, Taiwan's mangroves exist in high-energy hydrodynamic environments with frequent extreme climatic events, which are equally critical factors limiting SOC accumulation.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-08-20T16:27:31Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-08-20T16:27:31Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents論文口試委員審定書--------------------------------------------------------------------------i
謝辭--------------------------------------------------------------------------------------ii
中文摘要----------------------------------------------------------------------------------iii
Abstract----------------------------------------------------------------------------------v
目次-------------------------------------------------------------------------------------vii
圖次 -----------------------------------------------------------------------------------x
表次-------------------------------------------------------------------------------------xii
第一章、 前言-------------------------------------------------------------------------------1
1.1紅樹林生態系與藍碳----------------------------------------------------------------------1
1.1.1 紅樹林生態系簡介--------------------------------------------------------------------1
1.1.2 紅樹林碳封存功能與全球意義-----------------------------------------------------2
1.1.3 臺灣紅樹林現況 ----------------------------------------------------------------------4
1.2 沉積物有機碳的來源與組成-------------------------------------------------------------5
1.3 全球紅樹林生態系總碳儲量-------------------------------------------------------------6
1.4 影響沉積有機碳含量的環境因子-------------------------------------------------------7
1.4.1 氣候與地質背景-----------------------------------------------------------------------7
1.4.2 潮汐作用------------------------------------------------------------------------------8
1.4.3 粒徑---------------------------------------------------------------------------------8
第二章、 研究區域與方法-------------------------------------------------------------------10
2.1 研究區域概況---------------------------------------------------------------------------10
2.1.1 樣區位置與範圍---------------------------------------------------------------------10
2.1.2 氣候與水文條件---------------------------------------------------------------------15
2.1.3 地質背景----------------------------------------------------------------------------26
2.1.3.1關渡、挖子尾地質背景--------------------------------------------------------26
2.1.3.2新豐地質背景--------------------------------------------------------------------27
2.1.3.3安平地質背景--------------------------------------------------------------------28
2.2 樣本採集與實驗室分析------------------------------------------------------------------29
2.2.1 沉積物樣本採集方法---------------------------------------------------------------29
2.2.2 有機碳、無機碳分析方法---------------------------------------------------------30
2.2.3 粒徑分析方法------------------------------------------------------------------------32
2.2.4 穩定碳同位素分析方法------------------------------------------------------------33
2.3 資料處理與統計分析---------------------------------------------------------------------35
2.4 地下部沉積物有機碳儲量---------------------------------------------------------------36
2.5沉積速率計算---------------------------------------------------------------------------36
2.6埋藏速率計算----------------------------------------------------------------------------38
第三章、 結果------------------------------------------------------------------------------39
3.1 關渡結果------------------------------------------------------------------------------39
3.1.1關渡B1岩芯分析結果--------------------------------------------------------------39
3.1.2關渡C1岩芯分析結果--------------------------------------------------------------43
3.1.3關渡D1岩芯分析結果--------------------------------------------------------------46
3.1.4關渡J1岩芯分析結果--------------------------------------------------------------49
3.2 挖子尾結果-----------------------------------------------------------------------------52
3.3 新豐結果-------------------------------------------------------------------------------55
3.3.1新豐1岩芯分析結果----------------------------------------------------------------55
3.3.2新豐2岩芯分析結果----------------------------------------------------------------58
3.3.3新豐3岩芯分析結果----------------------------------------------------------------61
3.4 安平結果-------------------------------------------------------------------------------64
3.4.1安平1岩芯分析結果----------------------------------------------------------------64
3.4.2安平2岩芯分析結果----------------------------------------------------------------67
3.4.3安平6岩芯分析結果----------------------------------------------------------------70
3.5地下部沉積物有機碳儲量------------------------------------------------------73
第四章、 討論------------------------------------------------------------------------------75
4.1 各樣區沉積物有機碳含量差異與來源探討------------------------------------------75
4.1.1關渡地區的沉積物有機碳特徵----------------------------------------------------75
4.1.2挖子尾地區的沉積物有機碳特徵-------------------------------------------------76
4.1.3新豐地區的沉積物有機碳特徵----------------------------------------------------77
4.1.4安平地區的沉積物有機碳特徵----------------------------------------------------78
4.2 影響有機碳含量的環境控制因子---------------------------------------------------79
4.2.1氣候因子的影響----------------------------------------------------------------------80
4.2.2降雨模式的影響----------------------------------------------------------------------81
4.2.3風速和極端天氣的影響-------------------------------------------------------------82
4.2.4沉積物粒徑與潮汐對有機質的影響----------------------------------------------83
4.2.5沉積速率對碳匯功能的貢獻-------------------------------------------------------85
4.2.6初級生產力與植被特性-------------------------------------------------------------86
4.3台灣西部紅樹林沉積物有機碳特徵之國際比較與分析---------------------------87
4.3.1全球與台灣紅樹林SOC碳儲量現況與差異的成因分析---------------------87
4.3.2碳封存速率 (CAR) 對照------------------------------------------------------------89
第五章、 結論------------------------------------------------------------------------------90
參考文獻-----------------------------------------------------------------------------------92
附錄------------------------------------------------------------------------------------107
-
dc.language.isozh_TW-
dc.subject紅樹林zh_TW
dc.subject總有機碳zh_TW
dc.subject碳封存zh_TW
dc.subject碳匯zh_TW
dc.subject粒徑分佈zh_TW
dc.subject穩定碳同位素zh_TW
dc.subjectcarbon sequestrationen
dc.subjectmangrovesen
dc.subjectstable carbon isotope of organic carbonen
dc.subjectgrain size distributionsen
dc.subjectcarbon sinken
dc.subjecttotal organic carbonen
dc.title臺灣西部紅樹林沉積物中有機碳含量研究zh_TW
dc.titleOrganic Carbon Contents in Mangrove Sediments, Western Taiwanen
dc.typeThesis-
dc.date.schoolyear113-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee陳惠芬;蔡正偉zh_TW
dc.contributor.oralexamcommitteeHuei-Fen Chen;Jeng-Wei Tsaien
dc.subject.keyword紅樹林,總有機碳,碳封存,碳匯,粒徑分佈,穩定碳同位素,zh_TW
dc.subject.keywordmangroves,total organic carbon,carbon sequestration,carbon sink,grain size distributions,stable carbon isotope of organic carbon,en
dc.relation.page136-
dc.identifier.doi10.6342/NTU202502344-
dc.rights.note未授權-
dc.date.accepted2025-08-15-
dc.contributor.author-college理學院-
dc.contributor.author-dept地質科學系-
dc.date.embargo-liftN/A-
顯示於系所單位:地質科學系

文件中的檔案:
檔案 大小格式 
ntu-113-2.pdf
  未授權公開取用
12.23 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved