請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98958完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 李國譚 | zh_TW |
| dc.contributor.advisor | Kuo-Tan Li | en |
| dc.contributor.author | 陳弘明 | zh_TW |
| dc.contributor.author | Hung-Ming Chen | en |
| dc.date.accessioned | 2025-08-20T16:26:12Z | - |
| dc.date.available | 2025-08-21 | - |
| dc.date.copyright | 2025-08-20 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-08-11 | - |
| dc.identifier.citation | Arnon, D.I. 1949. Copper enzymes in isolated chloroplasts. polyphenoloxidase in beta vulgaris. Plant Physiol 24:115.
Awika, H.O., D.B. Hays, J.E. Mullet, W.L. Rooney, and B.D. Weers. 2017. QTL mapping and loci dissection for leaf epicuticular wax load and canopy temperature depression and their association with QTL for staygreen in Sorghum bicolor under stress. Euphytica 213:207. Ballington, J.R. 2009. The role of interspecific hybridization in blueberry improvement. Bellasio, C., D.J. Beerling, and H. Griffiths. 2016. An Excel tool for deriving key photosynthetic parameters from combined gas exchange and chlorophyll fluorescence: theory and practice. Plant, Cell & Environment 39:1180-1197. Bernacchi, C.J., C. Pimentel, and S.P. Long. 2003. In vivo temperature response functions of parameters required to model RuBP-limited photosynthesis. Plant, Cell & Environment 26:1419-1430. Bierhuizen, J. and R. Slatyer. 1964. Transpiration from cotton leaves under a range of environmental conditions in relation to internal and external diffusive resistances. Australian Journal of Biological Sciences 17:115-130. Björkman, O. and B. Demmig. 1987. Photon yield of O2 evolution and chlorophyll fluorescence characteristics at 77 K among vascular plants of diverse origins. Planta 170:489-504. Björkman, O., N.K. Boardman, Jan M. Anderson, S.W. Thorne, D.J. Goodchild, and N.A. Pyliotis. 1972. Effect of light intensity during growth of Atriplex patula on the capacity of photosynthetic reactions, chloroplast components and structure. Washington, D.C. : Carnegie Institution of Washington. Brooks, A. and G.D. Farquhar. 1985. Effect of temperature on the CO2/O2 specificity of ribulose-1,5-bisphosphate carboxylase/oxygenase and the rate of respiration in the light. Planta 165:397-406. Buckley, T.N. and A. Diaz-Espejo. 2015. Partitioning changes in photosynthetic rate into contributions from different variables. Plant Cell Environ 38:1200-1211. Busch, F.A., E.A. Ainsworth, A. Amtmann, A.P. Cavanagh, S.M. Driever, J.N. Ferguson, J. Kromdijk, T. Lawson, A.D.B. Leakey, J.S.A. Matthews, K. Meacham-Hensold, R.L. Vath, S. Vialet-Chabrand, B.J. Walker, and M. Papanatsiou. 2024. A guide to photosynthetic gas exchange measurements: Fundamental principles, best practice and potential pitfalls. Plant, Cell & Environment. Caemmerer, S.v. 2000. Biochemical models of leaf photosynthesis. Cameron KD, Teece MA, Smart LB. Increased accumulation of cuticular wax and expression of lipid transfer protein in response to periodic drying events in leaves of tree tobacco. Plant Physiol. 2006;140(1):176-183. Carvalho, H.D.R., J.L. Heilman, K.J. McInnes, W.L. Rooney, and K.L. Lewis. 2020. Epicuticular wax and its effect on canopy temperature and water use of Sorghum. Agricultural and Forest Meteorology 284:107893. Chang, C.C. 2016. The physiologycal and morphological characteristics of rabbiteye and highbush blueberry (Vaccium spp.) at high temperatures. National Taiwan University. 2016. Charuvi, D., R. Nevo, E. Shimoni, L. Naveh, A. Zia, Z. Adam, J.M. Farrant, H. Kirchhoff, and Z. Reich. 2015. Photoprotection conferred by changes in photosynthetic protein levels and organization during dehydration of a homoiochlorophyllous resurrection plant. Plant Physiology 167:1554-1565. Crafts-Brandner, S.J., F.J. van de Loo, and M.E. Salvucci. 1997. The two forms of ribulose-1,5-bisphosphate carboxylase/oxygenase activase differ in sensitivity to elevated temperature. Plant Physiology 114:439–444. Da Ros Carvalho, H. 2019. Epicuticular waxes and the energy balance of sorghum (Sorghum bicolor (L.) Moench). Texas A&M University. Demmig-Adams, B., A.M. Gilmore, and W.W. Adams, 3rd. 1996. Carotenoids 3: in vivo function of carotenoids in higher plants. Faseb j 10:403–412. Evans, J.R. and V.C. Clarke. 2018. The nitrogen cost of photosynthesis. Journal of Experimental Botany 70:7–15. Farquhar, G.D. and T.D. Sharkey. 1982. Stomatal conductance and photosynthesis. Annual Review of Plant Physiology 33:317-345. Farquhar, G.D., S. von Caemmerer, and J.A. Berry. 1980. A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species. Planta 149:78-90. Figueiredo, K.V., M.T. Oliveira, A.F.M. Oliveira, G.C. Silva, and M.G. Santos. 2012. Epicuticular-wax removal influences gas exchange and water relations in the leaves of an exotic and native species from a Brazilian semiarid region under induced drought stress. Australian Journal of Botany 60:685–692. Foyer, C.H. and G. Noctor. 1999. Leaves in the dark see the light. Science 284:599–601. Gaastra, P. 1959. Photosynthesis of crop plants as influenced by light, carbon dioxide, temperature, and stomatal diffusion resistance. Wageningen University. Gates, D.M. 1964. Leaf Temperature and Transpiration. Agronomy Journal 56:273–277. Genty, B., J.-M. Briantais, and N.R. Baker. 1989. The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence. Biochimica et Biophysica Acta (BBA) - General Subjects 990:87–92. Gough, R., V. Shutak, and R. Hauke. 1978. Growth and development of highbush blueberry. i. vegetative growth. Journal of the American Society for Horticultural Science 103:94–97. Grassi, G. and F. Magnani. 2005. Stomatal, mesophyll conductance and biochemical limitations to photosynthesis as affected by drought and leaf ontogeny in ash and oak trees. Plant, Cell & Environment 28:834–849. Gunthardt-Goerg, M.S. 1986. Epicuticular wax of needles of Pinus cembra, Pinus sylvestris and Picea abies. European Journal of Forest Pathology 16:400–408. Guo, J., W. Xu, X. Yu, H. Shen, H. Li, D. Cheng, A. Liu, J. Liu, C. Liu, S. Zhao, and J. Song. 2016. Cuticular wax accumulation is associated with drought tolerance in wheat near-isogenic lines. Frontiers in Plant Science Volume 7 - 2016. Guo, Y., N. Guo, Y. He, and J. Gao. 2015. Cuticular waxes in alpine meadow plants: climate effect inferred from latitude gradient in Qinghai-Tibetan Plateau. Ecology and Evolution 5:3954–3968. Hao, L.H., L.L. Guo, R.Q. Li, Y. Cheng, L. Huang, H.R. Zhou, M. Xu, F. Li, X.X. Zhang, and Y.P. Zheng. 2019. Responses of photosynthesis to high temperature stress associated with changes in leaf structure and biochemistry of blueberry (Vaccinium corymbosum L.). Scientia Horticulturae 246:251–264. Harley, P.C., F. Loreto, G. Di Marco, and T.D. Sharkey. 1992. Theoretical considerations when estimating the mesophyll conductance to CO2 flux by analysis of the response of photosynthesis to CO2 1. Plant Physiology 98:1429-1436. Herold, A. and D.H. Lewis. 1977. Mannose and green plants: occurrence, physiology and metabolism, and use as a tool to study the role of orthophosphate. The New Phytologist 79:1–40. Jeffree, C.E., R.P.C. Johnson, and P.G. Jarvis. 1971. Epicuticular wax in the stomatal antechamber of sitka spruce and its effects on the diffusion of water vapour and carbon dioxide. Planta 98:1–10. Jetter, R., L. Kunst, and A.L. Samuels. 2006. Composition of Plant Cuticular Waxes, p. 145–181Annual Plant Reviews Volume 23: Biology of the Plant Cuticle. Jetter, R. and M. Riederer. 2000. Composition of cuticular waxes on osmunda regalis fronds. Journal of Chemical Ecology 26:399–412. Jetter, R. and S. Schäffer. 2001. Chemical composition of the prunus laurocerasus leaf surface. Dynamic changes of the epicuticular wax film during leaf development. Plant Physiology 126:1725-1737. Plant Physiology 126:1725–1737. Jones, H. 1973. Gas exchange in plant leaves having different transfer resistances through their two surfaces. Australian Journal of Biological Sciences 26:1045–1056. Jones, H., G. . 1985. Partitioning stomatal and non-stomatal limitations to photosynthesis. Plant, Cell & Environment 8:95–104. Jones, H.G. 1973. Limiting factors in photosynthesis. New Phytologist 72:1089–1094. Jones, H.G. and R.O. Slatyer. 1972. Estimation of the transport and carboxylation components of the intracellular limitation to leaf photosynthesis. Plant Physiol 50:283–288. Kok, B. 1948. A critical consideration of the quantum yield of Chlorella-photosynthesis. W. Junk, Amsterdam. Kono, M. and I. Terashima. 2014. Long-term and short-term responses of the photosynthetic electron transport to fluctuating light. Journal of Photochemistry and Photobiology B: Biology 137:89–99. Kromdijk, J., H. Griffiths, and H.E. Schepers. 2010. Can the progressive increase of C4 bundle sheath leakiness at low PFD be explained by incomplete suppression of photorespiration? Plant, Cell & Environment 33:1935–1948. Laisk, A. and F. Loreto. 1996. Determining photosynthetic parameters from leaf CO2 exchange and chlorophyll fluorescence (Ribulose-1,5-Bisphosphate carboxylase/oxygenase specificity factor, dark respiration in the light, excitation distribution between photosystems, alternative electron transport rate, and mesophyll diffusion resistance. Plant Physiology 110:903–912. Laisk, A.K. 1977. Kinetics of Photosynthesis and Photorespiration of C3 Plants. Science:195. Lang, G.A. 1993. Southern highbush blueberries: physiological and cultural factors important for optimal cropping of these complex hybrids. Intl. symp. Vaccinium Cult. 346:2-80 Li, W., J. Li, J. Wei, C. Niu, D. Yang, and B. Jiang. 2023. Response of photosynthesis, the xanthophyll cycle, and wax in Japanese yew (Taxus cuspidata L.) seedlings and saplings under high light conditions. PeerJ 11:e14757. Lim, S.-L., C.P. Voon, X. Guan, Y. Yang, P. Gardeström, and B.L. Lim. 2020. In planta study of photosynthesis and photorespiration using NADPH and NADH/NAD+ fluorescent protein sensors. Nature Communications 11:3238. Long, S.P., S.H. Taylor, S.J. Burgess, E. Carmo-Silva, T. Lawson, A.P. De Souza, L. Leonelli, and Y. Wang. 2022. Into the shadows and back into sunlight: photosynthesis in fluctuating light. Annual Review of Plant Biology 73:617–648. Martins, S.C.V., J. Galmés, A. Molins, and F.M. DaMatta. 2013. Improving the estimation of mesophyll conductance to CO2: on the role of electron transport rate correction and respiration. Journal of Experimental Botany 64:3285–3298. Maskell, E.J. and F.F. Blackman. 1928. Experimental researches on vegetable assimilation and respiration. XVIII.—The relation between stomatal opening and assimilation.—A critical study of assimilation rates and porometer rates in leaves of Cherry Laurel. Proceedings of the Royal Society of London. Series B, Containing Papers of a Biological Character 102:488-533. Maxwell, K. and G.N. Johnson. 2000. Chlorophyll fluorescence—a practical guide. Journal of Experimental Botany 51:659–668. McClain, A.M. and T.D. Sharkey. 2020. Building a better equation for electron transport estimated from Chl fluorescence: accounting for nonphotosynthetic light absorption. New Phytologist 225:604–608. Medeiros, C.D., H.M. Falcão, J. Almeida-Cortez, D.Y.A.C. Santos, A.F.M. Oliveira, and M.G. Santos. 2017. Leaf epicuticular wax content changes under different rainfall regimes, and its removal affects the leaf chlorophyll content and gas exchanges of Aspidosperma pyrifolium in a seasonally dry tropical forest. South African Journal of Botany 111:267–274. Minstry of Agriculture, Executive Yuan (MOA). 2021. Agricultural product and product trade statistics: Volume and value of import and export of agricultural products. Agricultural Trade Statistics Query System. Available at: https://agrstat.moa.gov.tw/sdweb/public/trade/TradeCoa.aspx Mohammadian, M.A., J.R. Watling, and R.S. Hill. 2007. The impact of epicuticular wax on gas-exchange and photoinhibition in Leucadendron lanigerum (Proteaceae). Acta Oecologica-International Journal of Ecology 31:93–101. Moualeu-Ngangue, D.P., T.W. Chen, and H. Stützel. 2017. A new method to estimate photosynthetic parameters through net assimilation rate-intercellular space CO2 concentration (A-Ci ) curve and chlorophyll fluorescence measurements. New Phytol 213:1543-1554. Muller, P., X.-P. Li, and K.K. Niyogi. 2001. Non-Photochemical Quenching. A Response to Excess Light Energy. Plant Physiology 125:1558–1566. Munekage, Y., M. Hojo, J. Meurer, T. Endo, M. Tasaka, and T. Shikanai. 2002. PGR5 is involved in cyclic electron flow around photosystem I and is essential for photoprotection in Arabidopsis. Cell 110:361–371. Negin, B., S. Hen-Avivi, E. Almekias-Siegl, L. Shachar, G. Jander, and A. Aharoni. 2023. Tree tobacco (Nicotiana glauca) cuticular wax composition is essential for leaf retention during drought, facilitating a speedy recovery following rewatering. New Phytologist 237:1574–1589. Ni, Y., Y.J. Guo, Y.J. Guo, L. Han, H. Tang, and M. Conyers. 2012. Leaf cuticular waxes and physiological parameters in alfalfa leaves as influenced by drought. Photosynthetica 50:458–466. Ort, D.R., X. Zhu, and A. Melis. 2010. Optimizing antenna size to maximize photosynthetic efficiency. Plant Physiology 155:79–85. Parrie, E.J. 1990. Pollination of hybrid southern highbush blueberries (Vaccinium corymbosum L.). Louisiana State University, Baton Rouge. Parsons, P. 1964. Photosynthesis of cotton leaves under a range of environmental conditions in relation to internal and external diffusive resistances. Australian Journal of Biological Sciences 17:348–359. Peel, M.C., B.L. Finlayson, and T.A. McMahon. 2007. Updated world map of the Köppen-Geiger climate classification. Hydrol. Earth Syst. Sci. 11:1633–1644. Pons, T.L., J. Flexas, S. von Caemmerer, J.R. Evans, B. Genty, M. Ribas-Carbo, and E. Brugnoli. 2009. Estimating mesophyll conductance to CO2: methodology, potential errors, and recommendations. Journal of Experimental Botany 60:2217–2234. Portis, A.R. 1995. The regulation of Rubisco by Rubisco activase. Journal of Experimental Botany 46:1285–1291. Retamales, J.B. 2018. blueberries, CABI. Riederer, M. and C. Müller. 2007. Biology of the plant cuticle. Riederer, M. and L. Schreiber. 2001. Protecting against water loss: analysis of the barrier properties of plant cuticles. Journal of Experimental Botany 52:2023–2032. Robertson, A.R. 1977. The CIE 1976 color-difference formulae. Color Research & Application 2:7–11. Sakoda, K., W. Yamori, T. Shimada, S.S. Sugano, I. Hara-Nishimura, and Y. Tanaka. 2020. Higher stomatal density improves photosynthetic induction and biomass production in arabidopsis under fluctuating light. Frontiers in Plant Science 11. Sánchez, F.J., M.a. Manzanares, E.F. de Andrés, J.L. Tenorio, and L. Ayerbe. 2001. Residual transpiration rate, epicuticular wax load and leaf colour of pea plants in drought conditions. Influence on harvest index and canopy temperature. European Journal of Agronomy 15:57–70. Schreiber, L. and J. Önherr. 2009. Water and solute permeability of plant cuticles: measurement and data analysis. Water and Solute Permeability of Plant Cuticles: Measurement and Data Analysis:1–299. Sharkey, T.D. 1985. Photosynthesis in Intact Leaves of C3 Plants: Physics, Physiology and Rate Limitations. Botanical Review 51:53-105. Sharkey, T.D. 2016. What gas exchange data can tell us about photosynthesis. Plant, Cell & Environment 39:1161–1163. Sharkey, T.D., C.J. Bernacchi, G.D. Farquhar, and E.L. Singsaas. 2007. Fitting photosynthetic carbon dioxide response curves for C3 leaves. Plant, Cell & Environment 30:1035–1040. Shepherd, T. and D. Wynne Griffiths. 2006. The effects of stress on plant cuticular waxes. New Phytologist 171:469–499. Shikanai, T. 2007. Cyclic electron transport around photosystem I: genetic approaches. Annu Rev Plant Biol 58:199–217. Shutak, V.G. 1980. The cultivated highbush blueberry: twenty years of research. Rhode Island Agricultural Experiment Station Bulletin 428. Stinziano, J.R., R.K. Adamson, and D.T. Hanson. 2019. Using multirate rapid A/Ci curves as a tool to explore new questions in the photosynthetic physiology of plants. New Phytologist 222:785–792. Taiwan Climate Change Projection and Information Platform (TCCIP). 2024. Station observed climate data. National Science and Technology Center for Disaster Reduction. Available at: https://tccip.ncdr.nat.gov.tw/ds_01_station_statistics.aspx Takahashi, S., S.E. Milward, D.Y. Fan, W.S. Chow, and M.R. Badger. 2009. How does cyclic electron flow alleviate photoinhibition in Arabidopsis? Plant Physiol 149:1560–1567. Takizawa, K., A. Kanazawa, and D.M. Kramer. 2008. Depletion of stromal Pi induces high ‘energy-dependent’ antenna exciton quenching (qE) by decreasing proton conductivity at CFO-CF1 ATP synthase. Plant, Cell & Environment 31:235–243. Tanaka, Y., S.S. Sugano, T. Shimada, and I. Hara-Nishimura. 2013. Enhancement of leaf photosynthetic capacity through increased stomatal density in Arabidopsis. New Phytol 198:757–764. Tcherkez, G., R. Bligny, E. Gout, A. Mahé, M. Hodges, and G. Cornic. 2008. Respiratory metabolism of illuminated leaves depends on CO2 and O2 conditions. Proceedings of the National Academy of Sciences 105:797-802. Tsai, M.-H. and K.-T. Li. 2021. Leaf color as a morpho-physiological index for screening heat tolerance and improved water use efficiency in rabbiteye blueberry (Vaccinium virgatum Aiton). Scientia Horticulturae 278:109864. Van Gardingen, P.R., J. Grace, and C.E. Jeffree. 1991. Abrasive damage by wind to the needle surfaces of Picea sitchensis (Bong.) Carr. and Pinus sylvestris L. Plant, Cell & Environment 14:185–193. van Tol, N., M. Rolloos, D. Augustijn, A. Alia, H.J. de Groot, P.J.J. Hooykaas, and B.J. van der Zaal. 2017. An Arabidopsis mutant with high operating efficiency of Photosystem II and low chlorophyll fluorescence. Scientific Reports 7:3314. Vassey, T.L. and T.D. Sharkey. 1989. Mild water stress of phaseolus vulgaris plants leads to reduced starch synthesis and extractable sucrose phosphate synthase activity 1. Plant Physiology 89:1066–1070. von Caemmerer, S. 1992. Carbon isotope discrimination in C3-C4 intermediates. Plant, Cell & Environment 15:1063–1072. von Caemmerer, S. and K.T. Hubick. 1989. Short-term carbon-isotope discrimination in C3-C4 intermediate species. Planta 178:475–481. Wada, M. 2013. Chloroplast movement. Plant Science 210:177–182. Wen, M., C. Buschhaus, and R. Jetter. 2006. Nanotubules on plant surfaces: Chemical composition of epicuticular wax crystals on needles of Taxus baccata L. Phytochemistry 67:1808–1817. Williamson, J.G., P.M. Lyrene, and J.W. Olmstead. 2012. Blueberry Gardener’s Guide: CIR1192/MG359, rev. 1/2012. EDIS 2012. Xu, Y., S. Chen, S. Zhao, J. Song, J. Sun, N. Cui, X. Chen, and B. Qu. 2024. Effects of light intensity on the photosynthetic characteristics of Hosta genotypes differing in the glaucousness of leaf surface. Scientia Horticulturae 327:112834. Y. V. Lykholat, N.A.K., O. O. Didur, A. A. Alexeyeva, T. Y. Lykholat. 2020. Modification of the epicuticular waxes of plant leaves due to increased sunlight intensity, Biosystems Diversity. Yamori, W. and T. Shikanai. 2016. Physiological Functions of Cyclic Electron Transport Around Photosystem I in Sustaining Photosynthesis and Plant Growth. Annu Rev Plant Biol 67:81–106. Yin, X., P.C. Struik, P. Romero, J. harbinson, J.B. Evers, P.E.L. Van der putten, and J. Vos. 2009. Using combined measurements of gas exchange and chlorophyll fluorescence to estimate parameters of a biochemical C3 photosynthesis model: a critical appraisal and a new integrated approach applied to leaves in a wheat (Triticum aestivum) canopy. Plant, Cell & Environment 32:448-464. Yin, X., M. Van Oijen, and A.H.C.M. Schapendonk. 2004. Extension of a biochemical model for the generalized stoichiometry of electron transport limited C3 photosynthesis. Plant, Cell & Environment 27:1211-1222. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98958 | - |
| dc.description.abstract | 本研究旨在探討葉片角質蠟層(epicuticular wax)對藍莓(Vaccinium spp.)葉片光合作用效率與環境適應性之影響。葉表蠟質能限制太陽輻射、降低葉溫以提升逆境調節能力,也可能對氣體擴散路徑造成阻礙,進而影響光合作用速率。由於台灣夏季氣候高溫高濕,對於蠟質含量高品種而言,光合作用速率可能因現氣體擴散受限而降低,反之亦可能因環境逆境減少而增加。因此,本試驗以蠟層豐厚之兔眼藍莓(V. virgatum)品種 NTU025 與蠟層較薄之南方高叢藍莓(V. corymbosum hybrid)品種Blue Muffin (BM)為材料,分為對照組(NTU025)、黏土去蠟處理(NTU025-C)、擦拭去蠟處理(NTU025-TIS)以及低蠟品種(BM)等四組處理,測量葉色、葉片氣體交換、葉溫、螢光、光反應曲線與CO2反應曲線。再以Farquhar, von Caemmerer and Berry (FvCB) model 分析及比較可能影響光合作用的因子。結果發現去除蠟質顯著提升NTU025之氣孔導度(gs)與蒸散速率(E),並伴隨細胞間隙CO2 濃度(Ci)上升,反映氣體擴散效率的改善,但水分利用效率(WUE)則呈下降趨勢。皮爾森相關分析亦顯示葉片亮度(L*)與蠟質呈正相關,但與gs、E、Ci呈顯著負相關;葉肉導度(gm)於各處理間無顯著差異。整體而言,在無環境逆境的狀態下,gs為主要擴散限制來源,gm影響相對較小。在光反應方面,去除蠟質後,光合作用系統PSII 穩定性與光能調控能力下降,導致電子傳遞鏈速率(Jmax)下降。在去蠟處理 NTU025的葉片,雖然擴散提升,但 PSII受光傷害風險增加,造成 Jmax明顯低於 BM,進而限制 RuBP 再生與光合作用速率。與之相對,BM 處理組在維持高 gs的同時亦展現更佳的 Jmax,顯示其具備平衡擴散與光保護的機制。 | zh_TW |
| dc.description.abstract | This study aimed to investigate the effects of epicuticular wax on photosynthetic efficiency and environmental adaptability in blueberry (Vaccinium spp.) leaves. Leaf wax layers can enhance stress tolerance by reflecting solar radiation and reducing leaf temperature. On the other hand, they may also obstruct gas diffusion pathways, potentially limiting photosynthetic efficiency. In the hot and humid summer climate, photosynthesis of cultivars with thick-wax may be reduced by constrained gas diffusion, or oppositely, may be improved due to reduced stress. Therefore, this study utilized two blueberry cultivars with differing wax characteristics: NTU025, a rabbiteye blueberry (V. virgatum) with a thick wax layer, and Blue Muffin (BM), a southern highbush blueberry (V. corymbosum hybrid) with thin wax. Four treatment groups were established: a control group (NTU025), clay-dewaxed (NTU025-C), tissue-wiped (NTU025-TIS), and low-wax genotype (BM). Leaf color, gas exchange, leaf temperature, chlorophyll fluorescence, light response curves, and CO2 response curves were measured. Key photosynthetic parameters were analyzed using the Farquhar, von Caemmerer, and Berry (FvCB) model. Wax removal significantly increased stomatal conductance (gs), transpiration (E), and intercellular CO2 concentration (Ci), indicating enhanced diffusion capacity. However, water use efficiency (WUE) declined. Pearson correlation analysis showed significant negative correlations between leaf brightness (L*) wax content, gs, E, and Ci, confirming that higher wax content restricts gas diffusion. Mesophyll conductance (gm) showed no significant variation, indicating that in normal conditions without stress, stomatal limitations dominated. Analysis of diffusion limitation partitioning confirmed that gs, rather than gm, was the primary constraint on CO2 diffusion. In terms of photochemistry, wax removal compromised PSII stability, leading to reduced electrontransport rate (Jmax). In the dewaxed NTU025 treatments, despite the improved CO2 diffusion, Jmax declined significantly, likely due to increased photodamage risk without wax protection. In contrast, BM maintained both high gs and superior Jmax, suggesting an intrinsic ability to balance diffusion and photoprotection, possibly via better energy regulation or higher chlorophyll content. Overall, the results indicate that under non-stressed conditions, epicuticular wax primarily impedes gas exchange rather than offering thermal advantages. Photosynthetic outcomes are ultimately shaped by the trade-off between enhanced diffusion and preserved photochemical capacity. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-08-20T16:26:12Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-08-20T16:26:12Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | Table of Contents
致謝..................................................................I 摘要.................................................................................................................................II Abstract..........................................................................................................................III Table of contents..........................................................................................................V List of Table...............................................................................................................VIII List of Figure................................................................................................................IX 1. Introduction..............................................................................................................1 1.1. Cultivation potential of blueberry cultivars in Taiwan......................................2 1.2. Introduction of epicuticular wax.............................................................................3 1.2.1. Ability of epicuticular wax.............................................................................3 1.2.2. Leaf wax in photoprotection and adaptation to high light intensity...............4 1.2.3. Impact of epicuticular wax on gas exchange in plants...................................5 1.2.4. Leaf color........................................................................................................5 1.2.5. High light Stress.............................................................................................6 1.2.6. Stomata density...............................................................................................7 1.3. Gas exchange modeling...........................................................................................8 1.3.1. Parameter derivation based on the Farquhar, von Caemmerer and Berry (FvCB) model.........................................................................................................8 1.3.2. Epicuticular wax effects on photosynthesis parameters............................................................................................................12 1.4. Quantify the contribution of individual physiological factors to photosynthetic rate................................................................................................................................13 1.5. Objectives and Hypothesis....................................................................................18 2. Materials and Methods.............................................................................................20 2.1. Plant materials...............................................................................................20 2.2. Plant treatments.............................................................................................20 2.3. Measurement of epicuticular wax layer.........................................................21 2.4. Stomatal density and stomata occlusion analysis..........................................22 2.5. Chlorophyll extraction...................................................................................22 2.6. Leaf structural and surface properties...........................................................23 2.7. Gas exchange measurement..........................................................................23 2.8. Leaf gas exchange model fitting...................................................................25 2.9. Chlorophyll fluorescence measurement........................................................27 2.10. Contribution of the variables for the photosynthesis rate changing............27 2.11. Data analysis................................................................................................29 3. Results......................................................................................................................30 3.1. Leaf surface and wax morphology analysis..................................................30 3.2. Leave morphological traits............................................................................31 3.3. Comparison of stomatal occlusion across wax removal treatments..............31 3.4. Gas exchange and water use efficiency parameters......................................32 3.5. Comparison of photosynthetic capacity between rabbiteye and southern highbush blueberry...............................................................................................32 3.6. Comparison of photosynthetic capacity under treatments............................33 3.7. Partitional analysis of the photosynthesis rate under wax removal treatments.............................................................................................................35 3.8. Physiological implications of epicuticular wax: correlations between L* and functional traits.....................................................................................................36 4. Discussion................................................................................................................56 4.1. Effects of epicuticular wax on photosynthetic carboxylation capacity.........56 4.2. The diffusion factors affect to photosynthesis rate between the wax removal treatments.............................................................................................................57 4.3. Epicuticular wax mediates photoprotection and electron transport under various light conditions........................................................................................61 4.4. Influence of epicuticular wax on water use efficiency..................................65 5. Conclusion................................................................................................................67 References....................................................................................................................69 Appendix......................................................................................................................77 | - |
| dc.language.iso | en | - |
| dc.subject | FvCB模型 | zh_TW |
| dc.subject | 葉片角質蠟 | zh_TW |
| dc.subject | 氣孔導度 | zh_TW |
| dc.subject | 光合作用 | zh_TW |
| dc.subject | FvcB model | en |
| dc.subject | photosynthesis | en |
| dc.subject | stomatal conductance | en |
| dc.subject | epicuticular wax | en |
| dc.title | 葉片角質蠟層對藍莓光合生理之影響 | zh_TW |
| dc.title | Effects of leaf cuticular wax on photosynthetic physiology in blueberry | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 李金龍;張嵐雁;林宣佑 | zh_TW |
| dc.contributor.oralexamcommittee | Chin-Lung Li;Lan-Yen Chang;Syuan-You Lin | en |
| dc.subject.keyword | FvCB模型,葉片角質蠟,氣孔導度,光合作用, | zh_TW |
| dc.subject.keyword | FvcB model,epicuticular wax,stomatal conductance,photosynthesis, | en |
| dc.relation.page | 77 | - |
| dc.identifier.doi | 10.6342/NTU202503621 | - |
| dc.rights.note | 同意授權(限校園內公開) | - |
| dc.date.accepted | 2025-08-14 | - |
| dc.contributor.author-college | 生物資源暨農學院 | - |
| dc.contributor.author-dept | 園藝暨景觀學系 | - |
| dc.date.embargo-lift | 2030-08-03 | - |
| 顯示於系所單位: | 園藝暨景觀學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-2.pdf 未授權公開取用 | 2.22 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
