Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 重點科技研究學院
  3. 奈米工程與科學學位學程
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98948
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor劉建豪zh_TW
dc.contributor.advisorChien-Hao Liuen
dc.contributor.author馬渝翔zh_TW
dc.contributor.authorYu-Hsiang Maen
dc.date.accessioned2025-08-20T16:23:54Z-
dc.date.available2025-08-21-
dc.date.copyright2025-08-20-
dc.date.issued2025-
dc.date.submitted2025-08-14-
dc.identifier.citation[1] C. A. Mack, “Fifty years of Moore’s law,” IEEE Trans. Semicond. Manuf., vol. 24, no. 2, pp. 202-207, 2011.
[2] R. R. Schaller, “Moore’s law: past, present and future,” IEEE Spectr., vol. 34, no. 6, pp. 52-59, 2002.
[3] T. N. Theis and H.-S. P. Wong, “The end of Moore's law: A new beginning for information technology,” Comput. Sci. Eng., vol. 19, no. 2, pp. 41-50, 2017.
[4] C. -H. Tung and C. H. Doug, “An integrated system scaling solution for future high performance computing,” Proc. IEEE Symp. VLSI Technol. Circuits, Kyoto, Japan, pp. 1-2, 2023.
[5] IMEC, “Smaller, better, faster: imec presents chip scaling roadmap,” IMEC Fut. Sum., 2022.
[6] S. Tago, K. Sasaki, and Y. Ochiai, “Reducing EMI in wire-bond BGA IC-chips through magnetic dipole moment control,” Proc. IEEE Int. Symp. Electromagn. Compat., Signal & Power Integr., Phoenix, AZ, USA, pp. 342-347, 2024.
[7] H.-N. L. Teodorescu and M. H. M. Teodorescu, “Aspects of EMI, EMC due to randomness in the electronic circuits and the PCB,” Proc. Int. Conf. Appl. Electron., Pilsen, Czech Republic, pp. 1-5, 2024.
[8] R. Raffaelli et al., “An EMI/EMC test bed for EMI susceptibility evaluation and weakness detection,” Proc. IEEE Energy Convers. Congr. Expo., Phoenix, AZ, USA, pp. 4867-4873, 2024.
[9] J. H. Cho, S. Jeong, J. -B. Kim, J. D. Ihm and J. Kim, “Prediction and analysis of radiated EMI from a wafer-level package based on IC source modeling,” IEEE Trans. Electromagn. Compat., vol. 66, no. 1, pp. 281-292, 2023.
[10] S. Kim et al., “Design and analysis of on-package inductor of an integrated voltage regulator for high-Q factor and EMI shielding in active interposer based 2.5D/3D ICs,” Proc. IEEE Int. Joint EMC/SI/PI and EMC Eur. Symp., Rome, Italy, pp. 498-503, 2021.
[11] D. Tian et al., “3D-conformable conductive composite film for printed circuit board level electromagnetic interference shielding,” IEEE Trans. Compon., Packag. Manuf. Technol., vol. 14, no. 10, pp. 1825-1834, 2024.
[12] A. Arivarsi, A. Kumar, and A. Misra, “A survey of 5G EMF, EMI measurement, health impact and shielding materials,” Proc. Int. Conf. Modeling, Simulation & Intell. Comput., Chennai, India, pp. 57-62, 2024.
[13] K. Liu et al., “Multifunctional nanocellulose-based electromagnetic interference shielding composites: Design, functionality, and future prospects,” Ind. Crops Prod., vol. 210, Art. no. 118148, 2024.
[14] Z. Zhu et al., “Human nervous system inspired modified graphene nanoplatelets/cellulose nanofibers‐based wearable sensors with superior thermal management and electromagnetic interference shielding,” Adv. Funct. Mater., vol. 34, no. 28, Art. no. 2315851, 2024.
[15] Y. Peng et al., “Thermally conductive and UV-EMI shielding electronic textiles for unrestricted and multifaceted health monitoring,” Nano-Micro Lett., vol. 16, no. 1, Art. no. 199, 2024.
[16] J. Ding et al., “Defect engineering activates Schottky heterointerfaces of graphene/CoSe₂ composites with ultrathin and lightweight design strategies to boost electromagnetic wave absorption,” Adv. Funct. Mater., vol. 33, no. 48, Art. no. 2305463, 2023.
[17] Y. Guo et al., “Advances and mechanisms in polymer composites toward thermal conduction and electromagnetic wave absorption,” Sci. Bull., vol. 68, no. 11, pp. 1195-1212, 2023.
[18] S. Zhang et al., “Integration of multiple heterointerfaces in a hierarchical 0D@2D@1D structure for lightweight, flexible, and hydrophobic multifunctional electromagnetic protective fabrics,” Nano-Micro Lett., vol. 15, no. 1, Art. no. 204, 2023.
[19] A. Mishra and S. K. Dubey, “EMC/EMI compliance for electromagnetic field measurement: An overview,” MAPAN, vol. 40, no. 1, pp. 273-285, 2025.
[20] K. Ramya, J. Gopalakrishnan, B. Chokkalingam, R. Verma, and L. Mihet-Popa, “A comprehensive evaluation and assessment practices of electromagnetic interferences in electric vehicle,” IEEE Access, vol. 13, pp. 40520-40560, 2025.
[21] B. Bae and J. Kim, “Quantitative analysis and prediction of EMI from spread spectrum of differential random signaling based on IC source modeling,” IEEE Trans. Electromagn. Compat., vol. 66, no. 5, pp. 1542-1555, 2024.
[22] C. R. Paul, R. C. Scully, and M. A. Steffka, Introduction to Electromagnetic Compatibility, John Wiley & Sons, 2022.
[23] R. Murugan et al., “Multiscale EMC modeling, simulation, and validation of a synchronous step-down DC-DC converter,” IEEE J. Multiscale Multiphysics Comput. Tech., vol. 8, pp. 269-280, 2023.
[24] D. Kircher, S. Profanter, and B. Deutschmann, “A modular and scalable system for electromagnetic compatibility testing of integrated circuits,” e+ i Elektrotech. Inf.tech., vol. 141, no. 1, pp. 47-55, 2024.
[25] S. Battermann, K. Hemmerlein, and M. Stecher, “Discussion of the height scan introduced in CISPR 32 for measuring emissions above 1 GHz,” Proc. Int. Symp. Electromagn. Compat. – EMC Europe, Krakow, Poland, pp. 1-6, 2023.
[26] Electromagnetic Compatibility of Multimedia Equipment – Emission Requirements, Standard CISPR 32, Int. Electrotechnical Commission, 2020.
[27] Industrial, Scientific and Medical Equipment–Radio-frequency Disturbance Characteristics–Limits and Methods of Measurement, Standard CISPR 11, Int. Electrotechnical Commission, 2021.
[28] M. Dzwonkowski, A. Bekasiewicz, and S. Koziel, “Multitaper-based post-processing of compact antenna responses obtained in non-anechoic conditions,” Proc. Int. Conf. Comput. Sci., pp. 3-10, 2024.
[29] J. Olencki et al., “A low-cost system for far-field non-anechoic measurements of antenna performance figures,” IEEE Access, vol. 11, pp. 39165-39175, 2023.
[30] A. Bekasiewicz, S. Koziel, and M. Czyz, “Time-gating method with automatic calibration for accurate measurements of electrically small antenna radiation patterns in non-anechoic environments,” Measurement, vol. 208, Art. no. 112477, 2023.
[31] International Electrotechnical Commission, Electromagnetic compatibility, [Online], Available: https://www.iec.ch/emc, [Accessed: July 19, 2025].
[32] H. Li and M. Fu, “Evaluation and suppression of high-frequency radiated EMI in inductive power transfer system,” IEEE Trans. Power Electron., vol. 39, no. 7, pp. 8998-9006, 2024.
[33] M. I. Khan et al., “Estimation and analysis of higher-order harmonics in advanced integrated circuits to implement noise-free future-generation micro- and nanoelectromechanical systems,” Micromachines, vol. 12, no. 5, Art. no. 541, 2021.
[34] X. Wang et al., “Digital harmonic cancellation for RF power amplifier using indirect learning architecture,” IEEE Trans. Microw. Theory Techn., vol. 73, no. 5, pp. 1514-1524, 2025, doi: 10.1109/TMTT.2025.3573569.
[35] G. C. Tripathi, M. Rawat, and P. Roblin, “Harmonic cancellation technique for ultra-wideband filter-less 5G transmitter,” Proc. 93rd ARFTG Microw. Meas. Conf., San Diego, CA, USA, pp. 1-4, 2019.
[36] M. Rawat, P. Roblin, C. Quindroit, K. Salam and C. Xie, “Digitally supported feed-forward harmonic cancellation for filter-less ultra-wideband transmitters,” Proc. IEEE Int. Microw. RF Conf., Bangalore, India, pp. 84-87, 2014.
[37] H. K. Singhal and K. Rawat, “Digitally assisted harmonic cancellation for multi-octave filter-less transmitter,” IEEE Access, vol. 8, pp. 68913-68929, 2020.
[38] P. Liu et al., “Harmonic interference prediction of power amplifiers by artificial neural network behavioral model,” IEEE Trans. Electromagn. Compat., vol. 66, no. 4, pp. 1252-1261, 2024.
[39] D. U. Hongyu et al., “EMI characterization from GaN power amplifier nonlinearity test for 16-QAM 5G communication,” Radioeng., vol. 33, no. 4, 2024.
[40] R. Shirai, K. Wada, and T. Shimizu, “Failure protection method for CAN communication against EMI noise generated by switched-mode power supplies,” IEEE J. Emerg. Sel. Topics Power Electron., vol. 9, no. 5, pp. 6152-6160, 2021.
[41] M. S. Tong and X. Y. Li, Co-simulations of Microwave Circuits and High-Frequency Electromagnetic Fields, Springer, 2024.
[42] K. A. Hossain, “Study on electromagnetic interference (EMI) and electromagnetic compatibility (EMC): sources and design concept for mitigation of EMI/EMC,” J. Liberal Arts Humanit., vol. 4, no. 8, pp. 68-96, 2023.
[43] A. Kikitsu et al., “Wide band direct on-chip EMI shielding layer with metallic/magnetic multilayer,” J. Magn. Magn. Mater., vol. 539, Art. no. 168339, 2021.
[44] E. Katz, M. Avital, and I. Levi, “Refined analytical EM model of IC-internal shielding for hardware-security and intra-device simulative framework,” IEEE Access, vol. 12, pp. 22205-22218, 2024.
[45] M. Tsai et al., “High reliability solutions of EMI shielding technology for advanced SiP module,” Proc. IEEE CPMT Symp. Japan, Kyoto, Japan, pp. 88-91, 2024.
[46] S. K. Singamsetty, S. Krishnasamy, N. Prakash and K. Kumar, “Mitigation of EMI in high-speed PCB designs with dynamic phase control,” Proc. Joint Asia-Pacific Int. Symp. Electromagn. Compat. and Int. Conf. ElectroMagn. Interference & Compat., Bengaluru, India, pp. 1-3, 2023.
[47] H. H. Park et al., “Prediction of radiated EMI from PCB excited by switching noise of IC,” Microw. Opt. Technol. Lett., vol. 51, no. 10, pp. 2262-2266, 2009.
[48] Z. Ma, S. Wang, Q. Huang and Y. Yang, “A review of radiated EMI research in power electronics systems,” IEEE J. Emerg. Sel. Topics Power Electron., vol. 12, no. 1, pp. 675-694, 2023.
[49] Analog Devices, Reducing Radiated EMI for the CISPR32-Compliant Nanopower Buck Converter with the MAX38643, [Online], Available: https://www.analog.com/cn/resources/technical-articles/reducing-radiated-emi-for-the-cispr32compliant-nanopower-buck-converter-with-the-max38643.html, [Accessed: July 19, 2025].
[50] Integrated Circuits, Measurement of Electromagnetic Emission,150 kHz-1 GHz, Part 1: General Condition and Definitions, IEC 61967-1, Int. Electrotechnical Commission, 2002.
[51] Integrated Circuits, Measurement of Electromagnetic Emission,150 kHz-1 GHz, Part 3: Measurement of Radiated Emissions-Surface Scan Method, IEC 61967-3, Int. Electrotechnical Commission, 2005.
[52] B. Deutschmann and N. Juch, “Influence of the IC power supply and decoupling capacitor arrangement on the electromagnetic emission,” e+ i Elektrotech. Inf.tech., vol. 141, no. 1, pp. 66-75, 2024.
[53] T. -H. Song, X. -C. Wei, Q. -H. Xiao, W. -T. Liang and R. X. -K. Gao, “A source reconstruction method for unknown EMI sources inside a shielding enclosure based on magnitude-only near-field scanning,” IEEE Trans. Electromagn. Compat., vol. 66, no. 1, pp. 247-255, 2023.
[54] J. Qu, W. Wang, Y. Wu, Z. Wang, Q. Zeng, and Y. Liu, “Localization of electromagnetic interference source based on biplane sampling of near-field at IC emission level,” IEEE Trans. Electromagn. Compat., early access, 2025, doi: 10.1109/TEMC.2025.3583494.
[55] Y. Zhao, R. P. Lu, Z. Q. Song, X. Y. Mou, Y. W. Hu and G. H. Du, “EMC near-field scanning system with fast scanning method,” Proc. Photon. Electromagn. Res. Symp., Shanghai, China, pp. 1-5, 2024.
[56] N. Kim, L. H. Li, S. Karikalan, R. Sharifi and H. Kim, “Package-level electromagnetic interference analysis,” Proc. IEEE 64th Electron. Compon. Technol. Conf. (ECTC), Orlando, FL, USA, pp. 2119-2123, 2014.
[57] C.-H. Chen et al., “Prediction of near-field shielding effectiveness for conformal-shielded SiP and measurement with magnetic probe,” Proc. IEEE 24th Electr. Perform. Electron. Packag. Syst., San Jose, CA, USA, pp. 77-80, 2015.
[58] David M. Pozar, Microwave Engineering, John Wiley & Sons, 2016.
[59] J. Granger, S. A. Cummer, K. J. Lohmann and S. Johnsen, “Environmental sources of radio frequency noise: potential impacts on magnetoreception,” J. Comp. Physiol. A, vol. 208, no. 1, pp. 83-95, 2022.
[60] R. C. Johnson, H. A. Ecker, and J. S. Hollis, “Determination of far-field antenna patterns from near-field measurements,” Proc. IEEE, vol. 61, no. 12, pp. 1668-1694, 2005.
[61] D. Munalli, G. Dimitrakis, D. Chronopoulos, S. Greedy, A. Long, “Electromagnetic shielding effectiveness of carbon fibre reinforced composites,” Compos. B, Eng., vol. 173, Art. no. 106906, 2019.
[62] Y. K. Hong, C. Y. Lee, C. K. Jeong, D. E. Lee and K. Kim, J. Joo, “Method and apparatus to measure electromagnetic interference shielding efficiency and its shielding characteristics in broadband frequency ranges,” Rev. Sci. Instrum., vol. 74, no. 2, pp. 1098-1102, 2003.
[63] S. Geetha, K. K. Satheesh Kumar, Chepuri R. K. Rao, M. Vijayan and D. C. Trivedi, “EMI shielding: Methods and materials—A review,” J. Appl. Polym. Sci., vol. 112, no. 4, pp. 2073-2086, 2009.
[64] W. Prasad Kodali et al., Engineering electromagnetic compatibility : principles, measurements, and technologies, Wiley-IEEE Press, 1996.
[65] I. Kim, S.-G. Lee, Y.-H. Nam and J.-H. Lee, “Investigation on wireless link for medical telemetry including impedance matching of implanted antennas,” Sensors, vol. 21, no. 4, Art. no. 1431, 2021.
[66] STMicroelectronics, “TSV 792 Datasheet,” [Online]. Available: https://www.st.com/resource/en/datasheet/tsv791.pdf, [Accessed: July 19, 2025].
[67] V. Kattoor1, P.-T. Wei, Z.-F. H and T.-C. Wei, “Manipulating the adhesion of electroless plated Cu film on liquid polymer crystal substrate for advanced microelectronic manufacturing,” iScience, vol. 27, no. 11, Art. no. 111136, 2024.
[68] Y. -X. Liu, X. -C. Li, X. He, Z. -H. Peng and J. -F. Mao, “An ultra-wideband electric field probe with high sensitivity for near-field measurement,” IEEE Trans. Instrum. Meas., vol. 72, pp. 1-10, 2023, Art. no. 2502010.
[69] Z. Min, Z. Yan, W. Liu, J. Wang, D. Su and X. Yan, “A miniature high-sensitivity active electric field probe for near-field measurement,” IEEE Antennas Wireless Propag. Lett., vol. 18, no. 12, pp. 2552-2556, 2019.
[70] Z. Yan, J. Wang, W. Zhang, Y. Wang and J. Fan, “A miniature ultrawideband electric field probe based on coax-thru-hole via array for near-field measurement,” IEEE Trans. Instrum. Meas., vol. 66, no. 10, pp. 2762-2770, 2017.
[71] Jin Shi, M. A. Cracraft, K. P. Slattery, M. Yamaguchi and R. E. DuBroff, “Calibration and compensation of near-field scan measurements,” IEEE Trans. Electromagn. Compat., vol. 47, no. 3, pp. 642-650, 2005.
[72] J. -C. Zhang, X. -C. Wei, R. Yang, R. X. -K. Gao and Y. -B. Yang, “An efficient probe calibration based near-field-to-near-field transformation for EMI diagnosis,” IEEE Trans. Antennas Propag., vol. 67, no. 6, pp. 4141-4147, 2019.
[73] Langer EMV, “RF-E 10 Datasheet,” [Online]. Available: https://www.langer-emv.de/en/product/rf-passive-30-mhz-up-to-3-ghz/35/rf-e-10-e-field-probe-30-mhz-up-to-3-ghz/10, [Accessed: July 19, 2025].
[74] Keysight, “Spectrum Analyzer Basics,” [Online]. Available: https://www.keysight.com/tw/zh/assets/3123-1730/white-papers/Spectrum-Analyzers-Basics.pdf, [Accessed: July 19, 2025].
[75] L. Ding, X. -C. Wei, Z. -Y. Tang, J. Wen, L. Gao and R. X. -K. Gao, “Near-field scanning based shielding effectiveness analysis of system in package,” IEEE Trans. Compon., Packag. Manuf. Technol., vol. 11, no. 8, pp. 1235-1242, 2021.
[76] Y. Gao, A. Lauer, Q. Ren, and I. Wolff, “Calibration of electric coaxial near-field probes and applications,” IEEE Trans. Microw. Theory Techn., vol. 46, no. 11, pp. 1694-1703, 1998.
[77] S. Criel et al., “Theoretical and experimental quantitative characterization of the near-fields of printed circuit board interconnection structures,” Proc. Int. Symp. Electromagn. Compat., Atlanta, GA, USA, pp. 471-474, 1995.
[78] K. Srinivasan, H. Sasaki, M. Swaminathan, and R. Tummala, “Calibration of near field measurements using microstrip line for noise predictions,” Proc. 54th Electron. Compon. Technol. Conf. (ECTC), Las Vegas, NV, USA, pp. 1432-1436, 2004.
[79] J. Zhang et al., “An effective method of probe calibration in phase-resolved near-field scanning for EMI application,” IEEE Trans. Instrum. Meas., vol. 62, no. 3, pp. 648-658, 2013.
[80] S. W. Ellingson, Electromagnetics, VT Publishing, 2020.
[81] L. Yao et al., “Demonstration of tunable shielding effectiveness in GHz and THz bands for flexible graphene/ion gel/graphene film,” Appl. Sci., vol. 11, no. 11, Art. no. 5133, 2021.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98948-
dc.description.abstract科技的進步飛速,其中半導體產業的發展可以說是所有研究的基礎。半導體元件內部的電晶體密度提高,元件之間的距離也不斷縮小,追求效能提升的同時,電磁干擾的問題卻也日益嚴重,因此出現了各種解決電磁干擾的方法,包括改變電路佈局、元件的擺放位置或是使用電磁屏蔽材料。電磁屏蔽材料的研發需要不斷的透過實際量測數據進行反饋,並根據量測結果修正材料的製作參數,因此電磁干擾之量測系統的量測成本和速度是研究電磁屏蔽材料的關鍵,若每次量測都使用租借成本昂貴且排程時間冗長的電波暗室,將不利材料的研發進度。
本論文提出一套電磁干擾近場掃描量測系統,利用電壓隨耦器(Voltage Follwer)電路,創造出頻率可控的電磁輻射源,量測平台符合國際IC電磁干擾量測標準IEC 61967-1定義的10 cm × 10 cm四層板PCB,以及IEC 61967-3晶片表面掃描的量測規範,可快速且有效的量測各種電磁屏蔽材料於不同頻率下的屏蔽效率,頻率範圍含括IEC 61967-3所訂定之規範。此量測系統具有高度靈活性,既可量測薄膜型態的電磁屏蔽材料,也可將屏蔽材料封裝在IC上再進行量測,可在材料開發的早期階段就快速取得大量的電磁屏蔽效率量測數據,建立材料製作參數與屏蔽效能的對應關係,大幅提升屏蔽材料的研發速度。
zh_TW
dc.description.abstractThe advancement of technology is growing rapidly, and one of the most important industries is semiconductor. As the density of transistors within semiconductor devices continues to increase and the spacing between chips decreases, the issue of electromagnetic interference (EMI) has become increasingly severe. Various methods to mitigate EMI have been proposed, including modifications to circuit layout, adjustments to chips placement on the circuit board, and the use of electromagnetic shielding materials. The development of EMI shielding materials requires continuous feedback through actual measurement data. Therefore, the cost and efficiency of EMI measurement systems are critical to the research and development of shielding materials. Anechoic chambers, which are expensive to build and takes long scheduling times to rent it, is not a good choice in early stage of material development.
This work proposes a near-field EMI scanning measurement system that utilizes a voltage follower circuit to generate an electromagnetic radiation source with tunable frequency. The measurement platform complies with the international standard IEC 61967-1 for EMI testing of integrated circuits, specifically a 10 cm 10 cm four-layer PCB, as well as the IEC 61967-3 standard for IC surface scanning. The system enables effective evaluation of the shielding effectiveness of various materials across a wide frequency range, fully covering the specifications defined by IEC 61967-3. This measurement system offers high flexibility, allowing both the characterization of film-type shielding materials and the shielding materials directly packaged onto ICs. It help collecting shielding effectiveness data during the early stage of material development, enabling the establishment of correlations between fabrication parameters and shielding performance, significantly accelerating the R&D process of EMI shielding materials.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-08-20T16:23:54Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-08-20T16:23:54Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents致謝 i
中文摘要 ii
ABSTRACT iii
目次 v
圖次 viii
表次 xiii
第一章 緒論 1
1.1 前言 1
1.2 研究背景與動機 3
第二章 文獻回顧與理論基礎 5
2.1 電磁相容性 5
2.1.1 電磁干擾 7
2.1.2 印刷電路板電磁干擾 7
2.2 電磁干擾國際規範 9
2.2.1 CISPR 32 9
2.2.2 IEC 61967-1 10
2.2.3 IEC 61967-3 11
2.3近場與遠場 13
2.4集膚深度(Skin Depth) 14
2.5電磁干擾屏蔽原理 15
2.5.1 遠場電磁屏蔽 16
2.5.2 近場電磁屏蔽 18
第三章 實驗儀器設備與原理 21
3.1運算放大器IC 22
3.2印刷電路板 23
3.3近場電場探棒 24
3.4三軸定位平台 26
3.5頻譜分析儀 27
第四章 實驗流程 28
4.1量測架構介紹 28
4.2晶片開蓋 30
4.3 PCB設計 31
4.4量測方法 32
4.4.1晶片操作設定 32
4.4.2三軸定位平台定位方法 33
4.4.3頻譜分析儀設定 35
第五章 結果與討論 36
5.1 近場探棒校正 36
5.1.1 微帶線電場模擬 36
5.1.2 微帶線電場量測 38
5.2 不同頻率的IC EMI表現 41
5.2.1 輸入訊號頻率50 MHz 41
5.2.2 輸入訊號頻率100 MHz 43
5.2.3 輸入訊號頻率150 MHz 45
5.2.4 輸入訊號頻率200 MHz 47
5.2.5 專業測試單位的量測結果 49
5.3 Epoxy和Graphene之電磁屏蔽特性分析 53
5.3.1 直線強度掃描(50 MHz) 53
5.3.2 直線強度掃描(100 MHz) 55
5.3.3 直線強度掃描(150 MHz) 56
5.3.4 直線強度掃描(200 MHz) 58
5.4 不同掃描平面高度的IC EMI表現 60
5.4.1 完整IC於不同掃描平面高度的EMI分布 61
5.4.2 開蓋IC於不同掃描平面高度的EMI分布 61
5.4.3 Epoxy封裝於不同掃描平面高度的EMI分布 61
5.4.4 Graphene封裝於不同掃描平面高度的EMI分布 62
5.5 IC的輸入端和輸出端功率檢查 63
5.5.1 ADS模擬輸出端功率 64
5.5.2 頻譜分析儀量測輸出端功率 65
5.5.3 液態封裝材料電磁屏蔽特性總結 67
5.6 薄膜型態材料之電磁屏蔽量測 68
5.6.1 電壓隨耦器架構量測 68
5.6.2 波導管架構量測 71
5.6.3 薄膜型態材料電磁屏蔽特性總結 73
第六章 結論與未來展望 74
6.1 結論 74
6.2 未來展望 75
參考文獻 76
-
dc.language.isozh_TW-
dc.subject電磁干擾zh_TW
dc.subject近場電磁探棒zh_TW
dc.subject電磁屏蔽zh_TW
dc.subjectNear Field Electromagnetic Field Probeen
dc.subjectElectromagnetic Interference (EMI)en
dc.subjectElectromagnetic Shieldingen
dc.title開發微波頻段電磁干擾量測系統暨檢測石墨烯複合材料電磁屏蔽效果zh_TW
dc.titleDevelopment of a Microwave-Band EMI Measurement System and Evaluation of Electromagnetic Shielding Effectiveness of Graphene Compositesen
dc.typeThesis-
dc.date.schoolyear113-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee張子璿;鄭宇翔zh_TW
dc.contributor.oralexamcommitteeTzu-Hsuan Chang;Yu-Hsiang Chengen
dc.subject.keyword電磁干擾,電磁屏蔽,近場電磁探棒,zh_TW
dc.subject.keywordElectromagnetic Interference (EMI),Electromagnetic Shielding,Near Field Electromagnetic Field Probe,en
dc.relation.page82-
dc.identifier.doi10.6342/NTU202504404-
dc.rights.note同意授權(限校園內公開)-
dc.date.accepted2025-08-15-
dc.contributor.author-college重點科技研究學院-
dc.contributor.author-dept奈米工程與科學學位學程-
dc.date.embargo-lift2030-08-11-
顯示於系所單位:奈米工程與科學學位學程

文件中的檔案:
檔案 大小格式 
ntu-113-2.pdf
  未授權公開取用
9.53 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved