Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 森林環境暨資源學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98947
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor張庭維zh_TW
dc.contributor.advisorTing-Wei Changen
dc.contributor.author張雅婷zh_TW
dc.contributor.authorYa-Ting Changen
dc.date.accessioned2025-08-20T16:23:41Z-
dc.date.available2025-08-21-
dc.date.copyright2025-08-20-
dc.date.issued2025-
dc.date.submitted2025-08-14-
dc.identifier.citation丁執宇(1998)。生命週期衝擊評估方法介紹及應用。《工業污染防治》,66,96-104。
江汶錦(2021)。生物炭在田間施用之效果。《臺南區農業專訊》,(117),11。
李慧宜、鄭傑憶(2022年6月22日)。農委會欲推生物炭入30萬公頃土壤,學者:風險難估,需建立本土科學依據。《上下游新聞市集》。https://www.newsmarket.com.tw/blog/171096/
國家發展委員會(2022年3月30日)。2050淨零排放路徑及12項關鍵戰略。行政院國家發展委員會。https://ncsd.ndc.gov.tw/Fore/nsdn/about0/2050Path
張容蓉、鄒裕民(2007)。炭化稻草對於2-氯酚之吸附。臺灣農業化學與食品科學, 45(4&5), 206–217。https://doi.org/10.6578/TJACFS.2007.024
許祖菱(2025年5月29日)。微軟、Google都在買!逾6成生物炭合約被企業鎖定,這款碳移除技術為什麼?【分析】。《RECCESSARY》。https://www.reccessary.com/zh-tw/news/why-biochar-is-booming
連深(1991)。酸性土壤之利用與改良。載於《土壤管理手冊》(頁263)。國立中興大學土壤調查試驗中心。
陳思昀、賴朝明、柯光瑞(2011)。稻殼生物炭改良劑對土壤性質、碳貯存及溫室氣體排放之影響。臺灣農業化學與食品科學, 49(3), 131–140。https://doi.org/10.6578/TJACFS.2011.016
陳尊賢(1992)。臺灣農地酸性土壤之特性及其分類。收錄於《酸性土壤之特性及其改良研討會論文集》(頁2–1)。中華民國土壤肥料學會。
農業知識入口網(2022年11月7日)。新竹林管處與國立中興大學簽署合作協議書 林業剩餘資材華麗轉身成綠金。https://kmweb.moa.gov.tw/theme_data.php?theme=news&sub_theme=quality_farmer&id=72627
農業科技決策資訊平台(2024年7月15日)。生物炭及其醋液於有機肥料產品生產製作技術。檢自 https://agritech-foresight.atri.org.tw/article/contents/5589
農業部(2024)。113年綠色國民所得帳農業固體廢棄物歷年表。農業統計資料查詢系統。https://agrstat.moa.gov.tw/sdweb/public/common/Download.aspx
臺灣農業科技資源運籌管理學會(2017年7月1日)。生物炭產業國際趨勢報告(第4頁)。
環境部(2022)。產品碳足跡標準運輸排放係數查詢。產品碳足跡資訊網。https://cfp-calculate.tw/
簡士豪、江介倫、王建昇、張庠睿(2012)。添加生物炭對酸性紅壤肥力之影響。農業工程學報, 58(4),1–10。
Anando, A. I., Ehsan, M. M., Karim, M. R., Bhuiyan, A. A., Ahiduzzaman, M., & Karim, A. (2023). Thermochemical pretreatments to improve the fuel properties of rice husk: A review. Renewable Energy, 215, 118917. https://doi.org/10.1016/j.renene.2023.118917
Andrew, S. S. (2006). Crop Residue Removal for Biomass Energy Production: Effects on Soils and Recommendations. USDA-Natural Resource Conservation Service. Retrieved from https://www.nrcs.usda.gov/sites/default/files/2023-04/nrcs142p2_053253.pdf
Battaglia, M., Thomason, W., Fike, J. H., Evanylo, G., von Cossel, M., Babur, E., Iqbal, Y., & Diatta, A. (2020). The broad impacts of corn stover and wheat straw removal for biofuel production on crop productivity, soil health and greenhouse gas emissions: A review. GCB Bioenergy, 13(1), 45-57. https://doi.org/10.1111/gcbb.12774
Bridgwater, A. V. (2012). Review of fast pyrolysis of biomass and product upgrading. Biomass and Bioenergy, 38, 68–94. https://doi.org/10.1016/j.biombioe.2011.01.048
Cha, J. S., Park, S. H., Jung, S.-C., Ryu, C., Jeon, J.-K., Shin, M.-C., & Park, Y.-K. (2016). Production and utilization of biochar: A review. Journal of Industrial and Engineering Chemistry, 40, 1–15. https://doi.org/10.1016/j.jiec.2016.06.002
Cornelissen, G., Pandit, N. R., Taylor, P., Pandit, B. H., Sparrevik, M., & Schmidt, H. P. (2016). Emissions and char quality of flame-curtain "Kon Tiki" kilns for farmer-scale charcoal/biochar production. PLOS ONE, 11(5), e0154617. https://doi.org/10.1371/journal.pone.0154617
Ding, J. (2023). Soil nitrogen transformation and functional microbial abundance in an agricultural soil amended with biochar. Revista Brasileira de Ciência do Solo, 47, e0220156. https://doi.org/10.36783/18069657rbcs20220156
DNV. (2023). Puro.Earth facility and output audit report: Carbofex Oy (Puro Standard General Rules Edition 2022, Version v2). Carbofex Oy.
DNV. (2024). Puro.Earth output audit report: Carbofex Oy (Puro Standard General Rules Edition 2024, Version v4). Carbofex Oy.
DNV. (2025). Puro.Earth output audit report: Carbofex Oy (Puro Standard General Rules, v3.1). Carbofex Oy.
Duwiejuah, A. B., Abubakari, A. H., Quainoo, A. K., & Amadu, Y. (2020). Review of biochar properties and remediation of metal pollution of water and soil. Journal of Health and Pollution, 10(27), Article 200902. https://doi.org/10.5696/2156-9614-10.27.200902
Ecobio. (2023). LCA report – Carbofex’s biochar product: Life cycle assessment according to ISO 14040 and Puro.Earth Biochar methodology. Carbofex.
European Biochar Certificate (EBC) (2022). Guidelines for a Sustainable Production of Biochar, version 10.1. European Biochar Foundation. Retrieved from https://www.europeanbiochar.
European Biochar Certificate (EBC) (2023). European Biochar Certificate – Guidelines for a sustainable production of biochar (Version 10.3). Carbon Standards International. https://www.european-biochar.org
Gul, S., Whalen, J. K., Thomas, B. W., Sachdeva, V., & Deng, H. (2015). Physico-chemical properties and microbial responses in biochar-amended soils: Mechanisms and future directions. Agriculture, Ecosystems and Environment, 206, 46–59. https://doi.org/10.1016/j.agee.2015.03.015
Gul, S., Whalen, J. K., Thomas, B. W., Sachdeva, V., & Deng, H. (2015). Physico-chemical properties and microbial responses in biochar-amended soils: Mechanisms and future directions. Agriculture, Ecosystems & Environment, 206, 46–59. https://doi.org/10.1016/j.agee.2015.03.015
Hamidu, I., Afotey, B., Kwakye-Awuah, B., & Anang, D. A. (2025). Synthesis of silica and silicon from rice husk feedstock: A review. Heliyon, 11, e42491. https://doi.org/10.1016/j.heliyon.2025.e42491
Hassan, M., Liu, Y., Naidu, R., Parikh, S. J., Du, J., Qi, F., & Willett, I. R. (2020). Influences of feedstock sources and pyrolysis temperature on the properties of biochar and functionality as adsorbents: A meta-analysis. Science of the Total Environment, 744, 140714. https://doi.org/10.1016/j.scitotenv.2020.140714
He, M., Xu, Z., Sun, Y., Chan, P. S., Lui, I., & Tsang, D. C. W. (2021). Critical impacts of pyrolysis conditions and activation methods on application-oriented production of wood waste-derived biochar. Bioresource Technology, 341, 125811. https://doi.org/10.1016/j.biortech.2021.125811
Hedley, M., Camps-Arbestain, M., McLaren, S., Jones, J., & Chen, Q. (2020). A Review of Evidence for the Potential Role of Biochar to Reduce Net GHG Emissions from New Zealand Agriculture. Ministry of Primary Industries and the New Zealand Agricultural GHG Research Center. Retrieved from https://www.ag-emissions.nz/assets/Publications/Potential-Role-of-Biochar-in-NZ-2021.pdf
Hidayat, A., Rahmat, A., Nissa, R. C., Sukamto, S., Nuraini, L., Nurtanto, M., & Ramadhani, W. S. (2023). Analysis of rice husk biochar characteristics under different pyrolysis temperature. IOP Conference Series: Earth and Environmental Science, 1201(1), 012095. https://doi.org/10.1088/1755-1315/1201/1/012095
ICF S.A., Cerulogy, & Fraunhofer ISI. (2024). Support to the development of methodologies for the certification of industrial carbon removals with permanent storage: Review of carbon removals through biochar (Job No. 330301431) [Report submitted to the European Commission Directorate General for Climate Action]. European Commission. https://climate.ec.europa.eu/document/download/51aaaada-e29b-4bce-a34e-878d4d264846_en?filename=policy_carbon_expert_review_biochar_en.pdf&prefLang=it
Intergovernmental Panel on Climate Change. (2022). Climate change 2022: Mitigation of climate change. Contribution of Working Group III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (P. R. Shukla, J. Skea, R. Slade, et al., Eds.). Cambridge University Press. https://www.ipcc.ch/report/ar6/wg3/
IPCC. (2021). Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press.
J. Lehmann, S. Joseph (Eds.), Biochar for Environmental Management Science and Technology, Earthscans, UK (2009), pp. 1-12Juyal, V. (2024, November). Global biochar market size, share, and trends analysis report – Industry overview and forecast to 2032. Data Bridge Market Research. https://www.databridgemarketresearch.com/reports/global-biochar-market
Kabir, E., Kim, K.-H., & Kwon, E. E. (2023). Biochar as a tool for the improvement of soil and environment. Frontiers in Environmental Science, 11, 1324533. https://doi.org/10.3389/fenvs.2023.1324533
Kazawadi, D., Ntalikwa, J., & Kombe, G. (2021). A review of intermediate pyrolysis as a technology of biomass conversion for coproduction of biooil and adsorption biochar. Journal of Renewable Energy. https://doi.org/10.1155/2021/5533780
Knowledge Sourcing Intelligence. (2024). Biochar market – Forecasts from 2024 to 2029 (Product Code: 1456900). Global Information, Inc. https://www.giiresearch.com/report/ksi1456900-biochar-market-forecasts-from.html
Meng, F., Wang, Y., & Wei, Y. (2025). Advancements in biochar for soil remediation of heavy metals and/or organic pollutants. Materials, 18(7), 1524. https://doi.org/10.3390/ma18071524
Metz, B., Davidson, O. R., Bosch, P. R., Dave, R., & Meyer, L. A. (2007). Contribution of working group III to the fourth assessment report of the intergovernmental panel on climate change.
Moharir, A. (2025). Biochar market report 2025 (Global edition). Cognitive Market Research. https://www.cognitivemarketresearch.com/biochar-market-report
Muralikrishna, I. V., & Manickam, V. (2017). Chapter five – Life cycle assessment. In Environmental management: Science and engineering for industry (pp. 57–75). Butterworth-Heinemann. https://doi.org/10.1016/B978-0-12-811989-1.00005-1
Oraby, G. A. E. M., Putra, F., Natsir, M. H., Siswanto, D., Abdullah, M. M., & Abulibdeh, A. (2025). Straw burning dilemma in modern agriculture: A systematic review of driving factors, environmental impacts, and sustainable solutions. Rice Science. Advance online publication. https://doi.org/10.1016/j.rsci.2025.06.007org/media/doc/2/version_en_10_1.pdf
Shen, Q., & Wu, H. (2023). Rapid pyrolysis of biochar prepared from slow and fast pyrolysis: The effects of particle residence time on char properties. Proceedings of the Combustion Institute, 39(3), 3371–3378. https://doi.org/10.1016/j.proci.2022.07.119
Sun, Z., Yang, X., Liu, G., Cheng, C., Zhang, B., Li, M., Yang, B., & Wu, Z. (2025). Preparing hydrogen-rich syngas by chemical looping reforming of wheat straw pyrolysis volatiles via NiFe₂O₄@SBA-15 oxygen carrier. Chemical Engineering Science, 314, 121780. https://doi.org/10.1016/j.ces.2025.121780
Supercritical. (2025). Locked in or left behind? Biochar offtakes in 2025 [Report]. https://25023219.fs1.hubspotusercontent-eu1.net/hubfs/25023219/Supercritical%20Biochar%20Offtakes%20Report.pdf
Sylvera. (2025). Carbon offset pricing trends: What buyers should budget for in 2025. Sylvera. https://www.sylvera.com/blog/carbon-offset-price
Tan, S., Zhou, G., Yang, Q., Ge, S., Liu, J., Wang Cheng, Y., Yuh Yek, P. N., Wan Mahari, W. A., Kong, S. H., Chang, J. S., Sonne, C., Chong, W. W. F., & Lam, S. S. (2023). Utilization of current pyrolysis technology to convert biomass and manure waste into biochar for soil remediation: A review. Science of The Total Environment, 864, 160990. https://doi.org/10.1016/j.scitotenv.2022.160990
Together for Restoration. (2023). Project Reignite: Turning farm waste to climate action (Version 1). SRCNatura Sure Pvt. Ltd. https://registry.verra.org/app/projectDetail/VCS/4679
Tomczyk, A., Sokołowska, Z., & Boguta, P. (2020). Biochar physicochemical properties: Pyrolysis temperature and feedstock kind effects. Reviews in Environmental Science and Bio/Technology, 19(2), 191–215. https://doi.org/10.1007/s11157-020-09523-3
Tomczyk, A., Sokołowska, Z., & Boguta, P. (2020). Biochar physicochemical properties: Pyrolysis temperature and feedstock kind effects. Reviews in Environmental Science and Bio/Technology, 19, 191–215. https://doi.org/10.1007/s11157-020-09523-3
Tripathi, M., Sahu, J. N., & Ganesan, P. (2016). Effect of process parameters on production of biochar from biomass waste through pyrolysis: A review. Renewable and Sustainable Energy Reviews, 55, 467–481. https://doi.org/10.1016/j.rser.2015.10.122
Tripathi, M., Sahu, J. N., & Ganesan, P. (2016). Effect of process parameters on production of biochar from biomass waste through pyrolysis: A review. Renewable and Sustainable Energy Reviews, 55, 467–481. https://doi.org/10.1016/j.rser.2015.10.122
Verified Carbon Standard. (2023) . Project Reignite: Turning Farm Waste to Climate Action.
Verra. (2024). VCS Standard (Version 4.7). https://verra.org
Vieira, F. R., Luna, C. M. R., Arce, G. L. A. F., & Ávila, I. (2020). Optimization of slow pyrolysis process parameters using a fixed bed reactor for biochar yield from rice husk. Biomass and Bioenergy, 132, 105412. https://doi.org/10.1016/j.biombioe.2019.105412
Vieira, F. R., Luna, C. M. R., Arce, G. L. A. F., & Ávila, I. (2020). Optimization of slow pyrolysis process parameters using a fixed bed reactor for biochar yield from rice husk. Biomass and Bioenergy, 132, 105412. https://doi.org/10.1016/j.biombioe.2019.105412
Vuppaladadiyam, A. K., Vuppaladadiyam, S. S. V., Sahoo, A., Murugavelh, S., Anthony, E., Bhaskar, T., Zheng, Y., Zhao, M., Duan, H., Zhao, Y., Antunes, E., Sarmah, A. K., & Leu, S.-Y. (2023). Bio-oil and biochar from the pyrolytic conversion of biomass: A current and future perspective on the trade-off between economic, environmental, and technical indicators. Science of the Total Environment, 857, 159155. https://doi.org/10.1016/j.scitotenv.2022.159155
Wang, G., Fan, B., Chen, H., & Li, Y. (2020). Understanding the pyrolysis behavior of agriculture, forest and aquatic biomass: Products distribution and characterization. Journal of the Energy Institute, 93(5), 1892–1900. https://doi.org/10.1016/j.joei.2020.04.004
Wang, J., & Wang, S. (2019). Preparation, modification and environmental application of biochar: A review. Journal of Cleaner Production, 227, 1002–1022. https://doi.org/10.1016/j.jclepro.2019.04.282
Weber, K., & Quicker, P. (2018). Properties of biochar. Fuel, 217, 240–261. https://doi.org/10.1016/j.fuel.2017.12.054
Woolf, D., Lehmann, J., Ogle, S., Kishimoto-Mo, A. W., McConkey, B., & Baldock, J. (2021). Greenhouse gas inventory model for biochar additions to soil. Environmental Science & Technology, 55(21), 14795–14805. https://doi.org/10.1021/acs.est.1c02425
Wu, K.-T. (2019). Biochar: Its role and perspectives in agriculture and forestry circular economy in Taiwan. FFTC Agricultural Policy Platform. https://ap.fftc.org.tw/article/1429
Wu, W., Yang, M., Feng, Q., McGrouther, K., Wang, H., Lu, H., & Chen, Y. (2012). Chemical characterization of rice straw-derived biochar for soil amendment. Biomass and Bioenergy, 47, 268–276. https://doi.org/10.1016/j.biombioe.2012.09.034
Xiao, X., & Chen, B. (2017). A direct observation of the fine aromatic clusters and molecular structures of biochars. Environmental Science & Technology, 51(10), 5473–5482. https://doi.org/10.1021/acs.est.6b06300
Yang, Q., Zhou, H., Bartocci, P., Fantozzi, F., Mašek, O., Agblevor, F. A., Wei, Z., Yang, H., Chen, H., Lu, X., Chen, G., Zheng, C., Nielsen, C. P., & McElroy, M. B. (2021). Prospective contributions of biomass pyrolysis to China’s 2050 carbon reduction and renewable energy goals. Nature Communications, 12, Article 21868. https://doi.org/10.1038/s41467-021-21868-z
Zhang, C., Zeng, G., Huang, D., Lai, C., Chen, M., Cheng, M., Tang, W., Tang, L., Dong, H., Huang, B., Tan, X., & Wang, R. (2019). Biochar for Environmental Management: Mitigating Greenhouse Gas Emissions, Contaminant Treatment, and Potential Negative Impacts. Chemical Engineering Journal, 373, 902–922. https://doi.org/https://doi.org/10.1016/j.cej.2019.05.139
Zhang, P., Duan, W., Peng, H., Pan, B., & Xing, B. (2021). Functional biochar and its balanced design. ACS Environmental Au, 2(2), 115–127. https://doi.org/10.1021/acsenvironau.1c00032
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98947-
dc.description.abstract為實現 2050 年淨零排放目標,生物炭作為負碳技術之一,具有固碳減排、增強土壤碳匯,並可參與國際碳交易市場之經濟價值。本研究選用兩項國際現行方法學《VM0044 生物炭於土壤與非土壤應用之使用方法學》(VM0044: Biochar utilization in soil and non-soil applications)與《Puro.earth生物炭方法學》(Puro.earth Biochar Methodology)作為實驗方法架構,將其應用於臺灣農業廢棄物資源情境中,估算可達成的碳移除量與潛在經濟收益,以此來初步評估農業廢棄物生物炭碳信用獲取在臺灣之適用性。根據行政院農業部113年度農業廢棄物統計資料,稻殼與稻蒿約占臺灣農業廢棄物總量的77%(約185萬噸),顯示其具有高度資源化潛力。本研究假設以熱裂解技術將其轉化為生物炭,為評估臺灣農業廢棄物熱裂解轉化為生物炭之產量,根據不同方法學所規範之農業廢棄物最高可使用上限量,推估每年可利用稻殼稻蒿量約為84-117萬公噸。考量熱裂解設備每年處理數量上限,依各區稻殼與稻蒿產量比例,,本研究將全臺劃分為北、中、南、東四區,按比例配置熱裂解處理數量。將以上情境與參數進一步代入兩種國際方法學進行民國113年度潛在的稻殼、稻蒿生物炭生產量以及碳信用之推估。
根據模擬結果,VM0044專案於2025年可生產約28萬噸生物炭,每公噸的生物炭能夠移除1.26噸CO2,而Puro.earth專案可生產37萬噸生物炭,每公噸生物炭則能移除0.88噸CO2。根據生物炭碳交易市場價格之估計(每移除1 tCO2e),若依VM0044於2025年成功取得並售出約 23.8萬至 35.5萬個 VCUs,預期可產生約4,227萬至6,287萬美元(約新台幣12億至18億元)之收益;若依 Puro.earth Biochar Methodology取得約32.8萬個 CORCs,潛在收入則可達約5819萬美元(約新台幣17億元)。可見全台稻殼與稻蒿生物炭得出的碳信用具備可觀的經濟產值。但上述估算結果尚未扣除成本、手續費、風險準備金與其他交易支出,實際價格仍須視專案品質、匯率與市場行情而定。
生物炭生產雖具減碳與經濟潛力,仍涉及設置成本、能源消耗與污染風險,如重金屬與有機物逸散。目前本研究未進行相關評估,若欲推動碳信用專案,應納入完整成本結構與敏感度及不確定性分析,以確保其可行性與永續性。本研究結合臺灣農業廢棄物情境進行初步推估與方法學模擬,顯示生物炭具備應用與碳收益潛力,並具有碳封存與市場交易的實務參考價值,未來仍需更多在地實證驗證其成效。
zh_TW
dc.description.abstractTo achieve the goal of net-zero emissions by 2050, biochar, which is recognized as a negative emission technology, offers the potential for carbon sequestration, greenhouse gas reduction, and soil carbon enhancement. Meanwhile, the carbon sequestrated by biochar can possess economic value through participation in international carbon markets. To achieve a preliminary assessment of the applicability of carbon credit acquisition from agricultural-waste-based biochar in Taiwan, this study estimated the potential carbon removal and economic benefits of biochar derived from agricultural waste in Taiwan. Two internationally recognized methodologies were adopted in this study, which are "VM0044: Biochar Utilization in Soil and Non-Soil Applications" and the "Puro.earth Biochar Methodology", as the analytical frameworks
According to the statistics from the Ministry of Agriculture in 2024, rice husks and rice straw constitute approximately 77% of the total agricultural waste in Taiwan, equivalent to around 1.85 million metric tons. This indicates a substantial potential of agricultural waste for resource valorization such as production of biochar. In the calculation, this study premises an application of pyrolysis technology to convert these feedstocks into biochar. efer to the. Based on the maximum allowable usage limits stipulated by each methodology, there were 0.84 to 1.17 million metric tons of rice husks and straw can be utilized annually in 2024. Considering the processing capacity of pyrolysis systems and the regional distribution of feedstock supply, the study divides Taiwan into four zones (north, central, south, and east) and allocates feedstock accordingly. These data and assumptions are subsequently input into both international methodologies for carbon credit estimation.
Simulation results indicate that, under the VM0044 methodology, approximately 280,000 metric tons of biochar could be produced in 2025, with each ton capable of removing 1.26 tons of CO2. In contrast, the Puro.earth methodology allows for the production of 370,000 metric tons of biochar, with each ton removing approximately 0.88 tons of CO2. Based on estimated market prices for biochar carbon credits (per tCO2e removed), if the VM0044 project successfully issues and sells between 238,858.23 and 355,219.98 Verified Carbon Units (VCUs) in 2025, it may yield revenue between USD 42.27 million and USD 62.87 million (approximately NTD 1.2 to 1.8 billion). Under the Puro.earth methodology, approximately 328,768.02 CO2 Removal Certificates (CORCs) could be generated, with a potential income of USD 58.19 million (around NTD 1.7 billion). This implies that the carbon credit derived from rice-waste biochar can provide a substantial economic output. However, these estimates exclude project costs, transaction fees, buffer reserves, and other expenses. Thus, the actual revenue will depend on project quality, exchange rates, and prevailing market conditions.
Despite its carbon reduction and economic potential, biochar production involves capital investment, energy consumption, and environmental risks such as the release of heavy metals and organic pollutants. These factors are not included in the current analysis. For any future development of carbon credit projects, comprehensive cost structures, sensitivity analyses, and uncertainty assessments must be incorporated to ensure feasibility and sustainability. This study presents a preliminary estimation and methodological simulation contextualized for Taiwan's agricultural waste scenario, demonstrating that biochar holds considerable potential for carbon sequestration and market-based applications. Nevertheless, further local empirical validation is necessary to confirm its practical effectiveness.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-08-20T16:23:41Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-08-20T16:23:41Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents致謝 i
中文摘要 ii
Abstract iv
目次 vi
圖次 viii
表次 ix
第一章 緒論 1
第一節 研究動機與目的 1
第二節 研究流程與架構 3
第二章 文獻回顧 5
第一節 生物炭 5
第二節 碳交易 13
第三節 國際碳認證機構與生物炭方法學 17
第四節 LCA 20
第五節 方法學案例 23
第三章 研究材料與方法 29
第一節 生物質廢棄物來源 29
第二節 情境假設 30
第三節 溫室氣體移除公式 32
第四章 研究結果與討論 53
第一節 碳匯計算 53
第二節 適用性條件分析 65
第五章 結論 72
參考文獻 73
附錄一 81
-
dc.language.isozh_TW-
dc.subject負碳技術zh_TW
dc.subject碳交易zh_TW
dc.subject碳移除zh_TW
dc.subject碳封存zh_TW
dc.subject淨零排放zh_TW
dc.subject生物炭zh_TW
dc.subject農業廢棄物zh_TW
dc.subjectagricultural wasteen
dc.subjectnegative emissions technologiesen
dc.subjectcarbon emission tradingen
dc.subjectcarbon removalen
dc.subjectcarbon sequestrationen
dc.subjectnet-zero emissionsen
dc.subjectbiocharen
dc.title現行國際生物炭碳信用獲取技術與方法學於臺灣之適用性評估研究zh_TW
dc.titleStudy of Assessing the Applicability of Current International Biochar Carbon Credit Acquisition Technologies and Methodologies in Taiwanen
dc.typeThesis-
dc.date.schoolyear113-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee鄭智馨;林敏宜;官崇煜;楊啟見zh_TW
dc.contributor.oralexamcommitteeChih-Hsin Cheng;Min-Yi Lin;Chung-Yu Guan;Ci-Jian Yangen
dc.subject.keyword生物炭,淨零排放,碳封存,碳移除,碳交易,負碳技術,農業廢棄物,zh_TW
dc.subject.keywordbiochar,net-zero emissions,carbon sequestration,carbon removal,carbon emission trading,negative emissions technologies,agricultural waste,en
dc.relation.page85-
dc.identifier.doi10.6342/NTU202504373-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2025-08-15-
dc.contributor.author-college生物資源暨農學院-
dc.contributor.author-dept森林環境暨資源學系-
dc.date.embargo-lift2025-08-21-
顯示於系所單位:森林環境暨資源學系

文件中的檔案:
檔案 大小格式 
ntu-113-2.pdf2.59 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved