請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98946完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳嘉晉 | zh_TW |
| dc.contributor.advisor | Chia-Chin Chen | en |
| dc.contributor.author | 羅友捷 | zh_TW |
| dc.contributor.author | Yu-Chieh Lo | en |
| dc.date.accessioned | 2025-08-20T16:23:26Z | - |
| dc.date.available | 2025-08-21 | - |
| dc.date.copyright | 2025-08-20 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-08-13 | - |
| dc.identifier.citation | 1. Jordan, M.I. and T.M. Mitchell, Machine learning: Trends, perspectives, and prospects. Science, 2015. 349(6245): p. 255-260.
2. Asnicar, F., et al., Machine learning for microbiologists. Nature Reviews Microbiology, 2024. 22(4): p. 191-205. 3. LeCun, Y., Y. Bengio, and G. Hinton, Deep learning. Nature, 2015. 521(7553): p. 436-444. 4. Rosenblatt, F., The Perceptron - a Probabilistic Model for Information-Storage and Organization in the Brain. Psychological Review, 1958. 65(6): p. 386-408. 5. Hassoun, M.H., Fundamentals of artificial neural networks. 1995, Cambridge, Mass.: MIT Press. xxvi, 511 p. 6. Apicella, A., et al., A survey on modern trainable activation functions. Neural Networks, 2021. 138: p. 14-32. 7. Krogh, A., What are artificial neural networks? Nature Biotechnology, 2008. 26(2): p. 195-197. 8. Mark F. Bear, B.W.C., and Michael A. Paradiso, Neuroscience: Exploring the Brain. 2007. 9. Li, Z.W., et al., A Survey of Convolutional Neural Networks: Analysis, Applications, and Prospects. Ieee Transactions on Neural Networks and Learning Systems, 2022. 33(12): p. 6999-7019. 10. Caterini, A.L. and D.E. Chang, Recurrent Neural Networks, in Deep Neural Networks in a Mathematical Framework, A.L. Caterini and D.E. Chang, Editors. 2018, Springer International Publishing: Cham. p. 59-79. 11. Creswell, A., et al., Generative Adversarial Networks: An Overview. IEEE Signal Processing Magazine, 2018. 35(1): p. 53-65. 12. Lin, T., et al., A survey of transformers. AI Open, 2022. 3: p. 111-132. 13. Lachkar, Z. and N. Gruber, A comparative study of biological production in eastern boundary upwelling systems using an artificial neural network. Biogeosciences, 2012. 9(1): p. 293-308. 14. Yang, C.S., et al., All-Solid-State Synaptic Transistor with Ultralow Conductance for Neuromorphic Computing. Advanced Functional Materials, 2018. 28(42). 15. Lecun, Y., et al., Handwritten Digit Recognition - Applications of Neural Network Chips and Automatic Learning. Ieee Communications Magazine, 1989. 27(11): p. 41-46. 16. Zou, J., Y. Han, and S.-S. So, Overview of Artificial Neural Networks, in Artificial Neural Networks: Methods and Applications, D.J. Livingstone, Editor. 2009, Humana Press: Totowa, NJ. p. 14-22. 17. Ho, Y. and S. Wookey, The Real-World-Weight Cross-Entropy Loss Function: Modeling the Costs of Mislabeling. IEEE Access, 2020. 8: p. 4806-4813. 18. Amari, S., Backpropagation and Stochastic Gradient Descent Method. Neurocomputing, 1993. 5(4-5): p. 185-196. 19. Huo, Z.W., et al., Neuromorphic devices assisted by machine learning algorithms. International Journal of Extreme Manufacturing, 2025. 7(4). 20. van de Burgt, Y., et al., Organic electronics for neuromorphic computing. Nature Electronics, 2018. 1(7): p. 386-397. 21. Markovic, D., et al., Physics for neuromorphic computing. Nature Reviews Physics, 2020. 2(9): p. 499-510. 22. Lillicrap, T.P., et al., Backpropagation and the brain. Nature Reviews Neuroscience, 2020. 21(6): p. 335-346. 23. Caporale, N. and Y. Dan, Spike timing-dependent plasticity: A Hebbian learning rule. Annual Review of Neuroscience, 2008. 31: p. 25-46. 24. Yang, J.J.S., D.B. Strukov, and D.R. Stewart, Memristive devices for computing. Nature Nanotechnology, 2013. 8(1): p. 13-24. 25. Le Gallo, M. and A. Sebastian, An overview of phase-change memory device physics. Journal of Physics D-Applied Physics, 2020. 53(21). 26. Khan, A.I., A. Keshavarzi, and S. Datta, The future of ferroelectric field-effect transistor technology. Nature Electronics, 2020. 3(10): p. 588-597. 27. Chang, T., S.H. Jo, and W. Lu, Short-Term Memory to Long-Term Memory Transition in a Nanoscale Memristor. Acs Nano, 2011. 5(9): p. 7669-7676. 28. Wang, Z.R., et al., Memristors with diffusive dynamics as synaptic emulators for neuromorphic computing. Nature Materials, 2017. 16(1): p. 101-108. 29. Harikesh, P.C., D.Y. Tu, and S. Fabiano, Organic electrochemical neurons for neuromorphic perception. Nature Electronics, 2024. 7(7). 30. Yao, X.H., et al., Protonic solid-state electrochemical synapse for physical neural networks. Nature Communications, 2020. 11(1). 31. Rivnay, J., et al., Organic electrochemical transistors. Nature Reviews Materials, 2018. 3(2). 32. Gkoupidenis, P., et al., Neuromorphic Functions in PEDOT:PSS Organic Electrochemical Transistors. Advanced Materials, 2015. 27(44): p. 7176-+. 33. Deng, D., Li-ion batteries: basics, progress, and challenges. Energy Science & Engineering, 2015. 3(5): p. 385-418. 34. Adler, D. and H. Brooks, Theory of Semiconductor-to-Metal Transitions. Physical Review, 1967. 155(3): p. 826-+. 35. Kasap, S.O., Principles of electronic materials and devices. Fourth edition. ed. 2018, New York, NY: McGraw-Hill, a business unit of The McGraw-Hill Companies, Inc. xiv, 978 pages. 36. Sze, S.M. and M.K. Lee, Semiconductor devices, physics and technology. 3rd ed. 2012, Hoboken, N.J.: Wiley. ix, 578 p. 37. Siklitskaya, A., et al., An overview of physical and chemical long-range phenomena governed by Friedel oscillations: a bridge between physics and chemistry. Materials Chemistry Frontiers, 2025. 9(4). 38. Uhlenbeck, G.E. and L.S. Ornstein, On the theory of the Brownian motion. Physical Review, 1930. 36(5): p. 0823-0841. 39. Blickle, V., et al., Einstein relation generalized to nonequilibrium. Physical Review Letters, 2007. 98(21). 40. Tilley, R.J.D. and I. Wiley, Defects in solids. Wiley Series in Special Topics in Inorganic Chemistry. 2008, Hoboken, N.J: Wiley. 41. Maier, J., Defect Chemistry - Composition, Transport, and Reactions in the Solid-State .1. Thermodynamics. Angewandte Chemie-International Edition, 1993. 32(3): p. 313-335. 42. Zhang, B.K., et al., Mechanisms and properties of ion-transport in inorganic solid electrolytes. Energy Storage Materials, 2018. 10: p. 139-159. 43. Maier, J., Physical chemistry of ionic materials : ions and electrons in solids. 2004, Chichester ; Hoboken, NJ: Wiley. 537 p. 44. Laidler, K.J., The Development of the Arrhenius Equation. Journal of Chemical Education, 1984. 61(6): p. 494-498. 45. Mogensen, M., et al., Physical-Properties of Mixed Conductor Solid Oxide Fuel-Cell Anodes of Doped Ceo2. Journal of the Electrochemical Society, 1994. 141(8): p. 2122-2128. 46. Ma, J.X., C.S. Wang, and S. Wroblewski, Kinetic characteristics of mixed conductive electrodes for lithium ion batteries. Journal of Power Sources, 2007. 164(2): p. 849-856. 47. Xiao, Y.Y., et al., A review of memristor: material and structure design, device performance, applications and prospects. Science and Technology of Advanced Materials, 2023. 24(1). 48. Paulsen, B.D., et al., Organic mixed ionic-electronic conductors. Nature Materials, 2020. 19(1): p. 13-26. 49. Li, Y., et al., Discussion on ''Assessing feed-in tariffs on wind power installation and industry development in Taiwan" (Renewable and Sustainable Energy Reviews 2016; 58: 548-57). Renewable & Sustainable Energy Reviews, 2018. 92: p. 638-641. 50. Raza, W., et al., Recent advancements in supercapacitor technology. Nano Energy, 2018. 52: p. 441-473. 51. Grahame, D.C., The Electrical Double Layer and the Theory of Electrocapillarity. Chemical Reviews, 1947. 41(3): p. 441-501. 52. Oldham, K.B., A Gouy-Chapman-Stern model of the double layer at a (metal)/(ionic liquid) interface. Journal of Electroanalytical Chemistry, 2008. 613(2): p. 131-138. 53. McDowell, S.A.C., A simple derivation of the Boltzmann distribution. Journal of Chemical Education, 1999. 76(10): p. 1393-1394. 54. Kisza, A., The capacitance of the diffuse layer of electric double layer of electrodes in molten salts. Electrochimica Acta, 2006. 51(11): p. 2315-2321. 55. Tadmor, R., et al., Debye length and double-layer forces in polyelectrolyte solutions. Macromolecules, 2002. 35(6): p. 2380-2388. 56. Tybrandt, K., I.V. Zozoulenko, and M. Berggren, Chemical potential-electric double layer coupling in conjugated polymer-polyelectrolyte blends. Science Advances, 2017. 3(12). 57. Wu, C.M., et al., Recent Advances in Tungsten-Oxide-Based Materials and Their Applications. Frontiers in Materials, 2019. 6. 58. Kriksunov, L.B., D.D. Macdonald, and P.J. Millett, Tungsten Tungsten-Oxide Ph Sensing Electrode for High-Temperature Aqueous Environments. Journal of the Electrochemical Society, 1994. 141(11): p. 3002-3005. 59. Hobbs, B.S. and A.C.C. Tseung, High Performance Platinum Activated Tungsten Oxide Fuel Cell Electrodes. Nature, 1969. 222(5193): p. 556-&. 60. Zhu, Y.Q., et al., Tungsten oxide tree-like structures. Chemical Physics Letters, 1999. 309(5-6): p. 327-334. 61. Vemuri, R.S., M.H. Engelhard, and C.V. Ramana, Correlation between Surface Chemistry, Density, and Band Gap in Nanocrystalline WO Thin Films. Acs Applied Materials & Interfaces, 2012. 4(3): p. 1371-1377. 62. Nishioka, D., et al., Enhanced synaptic characteristics of HWO-based neuromorphic devices, achieved by current pulse control, for artificial neural networks. Neuromorphic Computing and Engineering, 2023. 3(3). 63. Bernards, D.A. and G.G. Malliaras, Steady-state and transient behavior of organic electrochemical transistors. Advanced Functional Materials, 2007. 17(17): p. 3538-3544. 64. Kayser, L.V. and D.J. Lipomi, Stretchable Conductive Polymers and Composites Based on PEDOT and PEDOT:PSS. Advanced Materials, 2019. 31(10). 65. Yildirim, S., Exact and numerical solutions of Poisson equation for electrostatic potential problems. Mathematical Problems in Engineering, 2008. 2008. 66. Shockley, W., The Theory of P-N Junctions in Semiconductors and P-N Junction Transistors. Bell System Technical Journal, 1949. 28(3): p. 435-489. 67. Pershaanaa, M., et al., Every bite of Supercap: A brief review on construction and enhancement of supercapacitor. Journal of Energy Storage, 2022. 50. 68. Krabbenhoft, K. and J. Krabbenhoft, Application of the Poisson-Nernst-Planck equations to the migration test. Cement and Concrete Research, 2008. 38(1): p. 77-88. 69. Szymanski, M.Z., D. Tu, and R. Forchheimer, 2-D Drift-Diffusion Simulation of Organic Electrochemical Transistors. Ieee Transactions on Electron Devices, 2017. 64(12): p. 5114-5120. 70. Paudel, P.R., et al., The Transient Response of Organic Electrochemical Transistors. Advanced Theory and Simulations, 2022. 5(5). 71. Koch, M., et al., Device Physics, Modeling and Simulation of Organic Electrochemical Transistors. Ieee Journal of the Electron Devices Society, 2023. 11: p. 665-671. 72. Dickinson, E.J.F. and A.J. Wain, The Butler-Volmer equation in electrochemical theory: Origins, value, and practical application (vol 872, 114145, 2020). Journal of Electroanalytical Chemistry, 2021. 901. 73. Jow, T.R., et al., Factors Limiting Li<SUP>+</SUP> Charge Transfer Kinetics in Li-Ion Batteries. Journal of the Electrochemical Society, 2018. 165(2): p. A361-A367. 74. Ramaswamy, N. and S. Mukerjee, Alkaline Anion-Exchange Membrane Fuel Cells: Challenges in Electrocatalysis and Interfacial Charge Transfer. Chemical Reviews, 2019. 119(23): p. 11945-11979. 75. Vidal-Iglesias, F.J., et al., Understanding the Nernst Equation and Other Electrochemical Concepts: An Easy Experimental Approach for Students. Journal of Chemical Education, 2012. 89(7): p. 936-939. 76. Waelder, J., et al., A Description of the Faradaic Current in Cyclic Voltammetry of Adsorbed Redox Species on Semiconductor Electrodes. Journal of the American Chemical Society, 2022. 144(14): p. 6410-6419. 77. Guan, L., L.P. Yu, and G.Z. Chen, Capacitive and non-capacitive faradaic charge storage. Electrochimica Acta, 2016. 206: p. 464-478. 78. Neyerlin, K.C., et al., Study of the exchange current density for the hydrogen oxidation and evolution reactions. Journal of the Electrochemical Society, 2007. 154(7): p. B631-B635. 79. Sachs, E., An Introduction to the Finite Element Method for Differential Equations. Siam Review, 2022. 64(2): p. 507-508. 80. Keene, S.T., et al., Enhancement-Mode PEDOT:PSS Organic Electrochemical Transistors Using Molecular De-Doping. Advanced Materials, 2020. 32(19). 81. Stavrinidou, E., et al., Direct Measurement of Ion Mobility in a Conducting Polymer. Advanced Materials, 2013. 25(32): p. 4488-4493. 82. Yang, C.S., et al., A Synaptic Transistor based on Quasi-2D Molybdenum Oxide. Advanced Materials, 2017. 29(27). 83. Hölscher, C., Synaptic plasticity and learning and memory:: LTP and beyond. Journal of Neuroscience Research, 1999. 58(1): p. 62-75. 84. van de Burgt, Y., et al., A non-volatile organic electrochemical device as a low-voltage artificial synapse for neuromorphic computing. Nature Materials, 2017. 16(4): p. 414-+. 85. Guo, J.J., et al., Understanding asymmetric switching times in accumulation mode organic electrochemical transistors. Nature Materials, 2024. 23(5). 86. Lin, L.Y. and C.C. Chen, Accurate characterization of transference numbers in electrolyte systems. Journal of Power Sources, 2024. 603. 87. Harris, J.K. and E.L. Ratcliff, Ion diffusion coefficients in poly(3-alkylthiophenes) for energy conversion and biosensing: role of side-chain length and microstructure. Journal of Materials Chemistry C, 2020. 8(38): p. 13319-13327. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98946 | - |
| dc.description.abstract | 類腦運算以事件驅動、並行處理及低功耗為特色,被視為突破傳統馮紐曼架構能耗瓶頸的潛力技術。實現類腦運算的關鍵元件為人工突觸,而在眾多突觸裝置中,電化學電晶體因其低功耗與非揮發特性,日益受到關注。此類元件由電解質、混合離子電子導體與金屬電極構成,透過閘極電壓調控混合導體中的導電性,以模擬生物突觸的可塑性。然而,離子與電子傳輸在方向與機制上的差異,以及兩者間的耦合效應,使得傳統等效電路模型難以全面描述其傳輸行為。目前多數電化學電晶體在類腦運算中的研究,仍以實驗方式探索最佳操作條件與材料選擇。因此,本研究建立一套模擬架構,旨在找出影響元件性能的關鍵操作條件與材料參數,並進一步解釋實驗中觀察到卻無法以現有模型合理說明的電流變化行為。
本研究構建一套有限元素法模擬框架,透過聯立求解 Nernst–Planck、Poisson及 Butler–Volmer方程,解析瞬態操作條件下混合離子電子導體通道內的離子/電子濃度與電位演變。我們模擬系統中探討兩種驅動模式:(1)傳統的閘極電壓調控與(2)閘極電流調控通道導電度。透過系統性改變離子擴散係數、元件幾何(通道長度與厚度)、閘極電流/汲極電壓、以及電解質濃度等關鍵參數,深入分析其對裝置瞬態響應的影響,進而建立設計指引。 模擬結果顯示,在電流驅動模式下,理想條件為低脈衝電流,短通道長度,適當通道厚度與小汲極電壓。其中,脈衝電流、厚度與汲極電壓影響導電度調變範圍,而通道長度主要決定響應速度。理想的人工突觸應具備單次脈衝下電導變化幅度小、經多次脈衝後電導可顯著調變,且響應時間短,以提升電化學電晶體於類腦運算中突觸權重調變的靈敏度與能效。在電壓控制模式下,需確保電解質與通道間具有低界面阻抗以縮短響應時間,而低離子擴散速率則可增強導電度的記憶性。此外,汲極電壓應控制在不大於−0.1V,以避免通道導電性產生非均勻變化。 本研究提供一套可預測電化學電晶體傳輸行為的理論模型,揭示影響突觸效能的關鍵因子,為未來高效能類腦處理器之設計提供理論依據與工程準則。 | zh_TW |
| dc.description.abstract | Neuromorphic computing, characterized by event-driven operation, parallel processing, and low power consumption, is considered a promising approach to overcoming the energy bottleneck inherent in the traditional von Neumann architecture. A key component in realizing neuromorphic computing is the artificial synapse. Among various types of synaptic devices, electrochemical transistors have garnered increasing attention due to their excellent low-power operation and non-volatile behavior. These devices typically consist of an electrolyte, a mixed ionic–electronic conductor, and metal electrodes. By applying a gate voltage to modulate the conductivity of the mixed conductor, they emulate the plasticity observed in biological synapses.
However, due to the differences in transport direction and mechanism between ions and electrons, along with their coupling effects, traditional equivalent circuit models fail to comprehensively describe their charge transport behavior. At present, most studies on electrochemical transistors for neuromorphic applications still rely on experimental methods to explore optimal operating conditions and material selections. Therefore, this study establishes a simulation framework to identify the critical operating conditions and material parameters influencing device performance and to explain current variations observed in experiments that cannot be adequately interpreted by existing models. This research constructs a finite element simulation platform that simultaneously solves the Nernst–Planck equation, the Poisson equation, and the Butler–Volmer equation to analyze the transient evolution of ion and electron concentrations, as well as electric potential, within the channel of the mixed ionic–electronic conductor. Two driving modes are considered in the simulated system: (1) modulation of channel conductivity via gate voltage, and (2) modulation via gate current. By systematically varying key parameters—including the ionic diffusion coefficient, device geometry (channel length and thickness), gate current or drain voltage, and electrolyte concentration—we investigate their influence on the transient response of the device and develop corresponding design guidelines. Simulation results show that, under the current-driven mode, optimal conditions include low pulse current, short channel length, appropriate channel thickness, and a small drain voltage. Pulse current, thickness, and drain voltage mainly influence the range of conductivity modulation, whereas channel length primarily determines the response speed. An ideal artificial synapse should exhibit small changes in conductivity per pulse, a wide modulation range after successive pulses, and short response times to enhance the sensitivity and energy efficiency of synaptic weight modulation in neuromorphic computing. Under voltage-driven operation, low interfacial impedance between the electrolyte and the channel is required to shorten the response time, while a slow ionic diffusion rate enhances the memory retention of the conductivity state. Additionally, the drain voltage should be maintained below −0.1 V to prevent non-uniform modulation of the channel conductivity. This study provides a predictive theoretical model for charge transport in electrochemical transistors, reveals the key factors affecting synaptic performance, and offers theoretical foundations and engineering guidelines for the design of future high-performance neuromorphic processors. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-08-20T16:23:26Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-08-20T16:23:26Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | Acknowledgement i
摘要 ii Abstract iii Contents v List of Figures vii List of Tables xii Denotation xiii Chapter 1 Introduction 1 1-1 Neuromorphic computing 1 1-1-1 From deep learning to neuromorphic computing 1 1-1-2 Physics of neuromorphic computing 7 1-1-3 Neuromorphic Devices 9 1-2 Electrochemical transistor architecture 11 1-2-1 Device Structure 11 1-2-2 Operating Mechanism: Ionic–Electronic Coupling 12 1-3 Conductors 14 1-3-1 Electron conductors 14 1-3-2 Ionic conductors 15 1-3-3 Mixed ionic-electronic conductors 19 1-4 Electric double layer 23 1-5 Channel Materials adopted in simulation 29 1-5-1 Tungsten oxide 29 1-5-2 PEDOT:PSS 29 Chapter 2 Theory 31 2-1 Governing equations of free charge carrier distribution 31 2-1-1 Poisson equation 31 2-1-2 Nernst-Planck equation 32 2-1-3 Continuity equation 32 2-1-4 Butler Volmer equation 34 2-2 Simulation model and parameters 38 Chapter 3 Results and Discussions 42 3-1 Mixed Ionic-Electronic Conductors 42 3-2 Current control mode 44 3-2-1 Gate pulse strength 44 3-2-2 Channel Length 53 3-2-3 Channel Thickness 57 3-2-4 Drain potential 61 3-3 Voltage control mode 66 3-3-1 Interfacial Resistance 67 3-3-2 Ion diffusivity in mixed conductor 78 3-3-2 Electrolyte Concentration 84 3-3-4 Drain potential 88 Chapter 4 Conclusion 94 References 97 | - |
| dc.language.iso | en | - |
| dc.subject | 類腦運算 | zh_TW |
| dc.subject | 突觸可塑性 | zh_TW |
| dc.subject | 電化學電晶體 | zh_TW |
| dc.subject | 混合離子電子導體 | zh_TW |
| dc.subject | 有限元素法 | zh_TW |
| dc.subject | electrochemical transistor | en |
| dc.subject | neuromorphic computing | en |
| dc.subject | synaptic plasticity | en |
| dc.subject | finite element method | en |
| dc.subject | mixed ionic–electronic conductor | en |
| dc.title | 電化學電晶體中離子與電子混合傳輸的理論探討 | zh_TW |
| dc.title | Theoretical Understanding of Mixed Ionic-Electronic Transport in Electrochemical Transistors | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 李文亞;闕居振 | zh_TW |
| dc.contributor.oralexamcommittee | Wen-Ya Lee;Chu-Chen Chueh | en |
| dc.subject.keyword | 類腦運算,突觸可塑性,電化學電晶體,混合離子電子導體,有限元素法, | zh_TW |
| dc.subject.keyword | neuromorphic computing,synaptic plasticity,electrochemical transistor,mixed ionic–electronic conductor,finite element method, | en |
| dc.relation.page | 101 | - |
| dc.identifier.doi | 10.6342/NTU202504231 | - |
| dc.rights.note | 同意授權(全球公開) | - |
| dc.date.accepted | 2025-08-15 | - |
| dc.contributor.author-college | 工學院 | - |
| dc.contributor.author-dept | 化學工程學系 | - |
| dc.date.embargo-lift | 2027-08-31 | - |
| 顯示於系所單位: | 化學工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-2.pdf 此日期後於網路公開 2027-08-31 | 4.71 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
