請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98943完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 劉邦鋒 | zh_TW |
| dc.contributor.advisor | Pangfeng Liu | en |
| dc.contributor.author | 吳榮哲 | zh_TW |
| dc.contributor.author | Rong-Jhe Wu | en |
| dc.date.accessioned | 2025-08-20T16:22:48Z | - |
| dc.date.available | 2025-08-21 | - |
| dc.date.copyright | 2025-08-20 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-08-14 | - |
| dc.identifier.citation | [1] T. B. Brown, B. Mann, N. Ryder, M. Subbiah, J. Kaplan, P. Dhariwal, A. Neelakantan, P. Shyam, G. Sastry, A. Askell, S. Agarwal, A. Herbert-Voss, G. Krueger, T. Henighan, R. Child, A. Ramesh, D. M. Ziegler, J. Wu, C. Winter, C. Hesse, M. Chen, E. Sigler, M. Litwin, S. Gray, B. Chess, J. Clark, C. Berner, S. McCandlish, A. Radford, I. Sutskever, and D. Amodei. Language models are few-shot learners, 2020.
[2] T. Chen, B. Xu, C. Zhang, and C. Guestrin. Training deep nets with sublinear memory cost, 2016. [3] A. Chowdhery, S. Narang, J. Devlin, M. Bosma, G. Mishra, A. Roberts, P. Barham, H. W. Chung, C. Sutton, S. Gehrmann, P. Schuh, K. Shi, S. Tsvyashchenko, J. Maynez, A. Rao, P. Barnes, Y. Tay, N. Shazeer, V. Prabhakaran, E. Reif, N. Du, B. Hutchinson, R. Pope, J. Bradbury, J. Austin, M. Isard, G. Gur-Ari, P. Yin, T. Duke, A. Levskaya, S. Ghemawat, S. Dev, H. Michalewski, X. Garcia, V. Misra, K. Robinson, L. Fedus, D. Zhou, D. Ippolito, D. Luan, H. Lim, B. Zoph, A. Spiridonov, R. Sepassi, D. Dohan, S. Agrawal, M. Omernick, A. M. Dai, T. S. Pillai, M. Pellat, A. Lewkowycz, E. Moreira, R. Child, O. Polozov, K. Lee, Z. Zhou, X. Wang, B. Saeta, M. Diaz, O. Firat, M. Catasta, J. Wei, K. Meier-Hellstern, D. Eck, J. Dean, S. Petrov, and N. Fiedel. Palm: Scaling language modeling with pathways, 2022. [4] G. Fang, X. Ma, M. Song, M. B. Mi, and X. Wang. Depgraph: Towards any structural pruning, 2023. [5] A. Gruslys, R. Munos, I. Danihelka, M. Lanctot, and A. Graves. Memory-efficient backpropagation through time, 2016. [6] D.-Y. Hong, T.-H. Tsai, N. Wang, P. Liu, and J.-J. Wu. Gpu memory usage optimization for backward propagation in deep network training. Journal of Parallel and Distributed Computing, 199:105053, 2025. [7] Y. Huang, Y. Cheng, A. Bapna, O. Firat, M. X. Chen, D. Chen, H. Lee, J. Ngiam, Q. V. Le, Y. Wu, and Z. Chen. Gpipe: Efficient training of giant neural networks using pipeline parallelism, 2019. [8] A. Mishra, J. A. Latorre, J. Pool, D. Stosic, D. Stosic, G. Venkatesh, C. Yu, and P. Micikevicius. Accelerating sparse deep neural networks, 2021. [9] D. Narayanan, M. Shoeybi, J. Casper, P. LeGresley, M. Patwary, V. A. Korthikanti, D. Vainbrand, P. Kashinkunti, J. Bernauer, B. Catanzaro, A. Phanishayee, and M. Zaharia. Efficient large-scale language model training on gpu clusters using megatron-lm, 2021. [10] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin, N. Gimelshein, L. Antiga, A. Desmaison, A. Kopf, E. Yang, Z. DeVito, M. Raison, A. Tejani, S. Chilamkurthy, B. Steiner, L. Fang, J. Bai, and S. Chintala. Pytorch: An imperative style, high-performance deep learning library. In Advances in Neural Information Processing Systems 32 (NeurIPS 2019), pages 8024–8035. Curran Associates, Inc., 2019. [11] S. Rajbhandari, J. Rasley, O. Ruwase, and Y. He. Zero: Memory optimizations toward training trillion parameter models, 2020. [12] M. Shoeybi, M. Patwary, R. Puri, P. LeGresley, J. Casper, and B. Catanzaro. Megatron-lm: Training multi-billion parameter language models using model parallelism, 2020. [13] S. Smith, M. Patwary, B. Norick, P. LeGresley, S. Rajbhandari, J. Casper, Z. Liu, S. Prabhumoye, G. Zerveas, V. Korthikanti, E. Zhang, R. Child, R. Y. Aminabadi, J. Bernauer, X. Song, M. Shoeybi, Y. He, M. Houston, S. Tiwary, and B. Catanzaro. Using deepspeed and megatron to train megatron-turing nlg 530b, a large-scale generative language model, 2022. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98943 | - |
| dc.description.abstract | 深度神經網路已成為廣泛成功的框架,應用於多種領域。然而,現代應用越來越依賴更大型的模型以提升性能。參數數量的快速增長常導致訓練過程中出現記憶體瓶頸。一種有效的解決方案是激活檢查點(activation checkpointing),該方法只在前向傳播中保存部分中間激活值,並在反向傳播時重新計算這些激活值,以降低記憶體消耗。本文聚焦於在多GPU環境下訓練深度神經網路時,最小化記憶體使用。我們採用流水線並行(pipeline parallelism)將模型分割成較小的階段並分布於多個設備,並結合檢查點技術,在負載重的情況下進一步減少記憶體需求。我們的目標是找到能夠在大規模多 GPU 訓練過程中優化記憶體效率的檢查點策略。 | zh_TW |
| dc.description.abstract | Deep neural networks have become a widely successful framework, applied in a wide range of applications. However, modern use cases increasingly rely on larger models to achieve better performance. This rapid growth in the number of parameters often results in memory bottlenecks during training. An effective approach to mitigate this issue is activation checkpointing, which involves storing only a subset of intermediate activations during the forward pass and recomputing them during the backward pass to reduce memory consumption. In this paper, we focus on minimizing memory usage when training deep neural networks across multiple GPUs. We employ pipeline parallelism to partition the model into smaller stages distributed across devices, and we apply checkpointing to further reduce memory demands under heavy workloads. Our goal is to identify checkpointing strategies that optimize memory efficiency during large-scale multi-GPU training. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-08-20T16:22:48Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-08-20T16:22:48Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 口試委員審定書 i
致謝 ii 摘要 iii Abstract iv Contents v Chapter 1 Introduction 1 1.1 Activation Checkpointing . . . . . . . . . . . . . . . . . . . . . . . 2 1.2 Gpipe Pipeline Method . . . . . . . . . . . . . . . . . . . . . . . . . 3 Chapter 2 Related Work 4 Chapter 3 Problem 5 3.1 Memory Model for Training on a Single GPU . . . . . . . . . . . . . 5 3.2 Memory Model for Training Across Multiple GPUs . . . . . . . . . . 6 3.3 Checkpoint Selection Problem with Multiple GPUs . . . . . . . . . . 7 Chapter 4 Algorithm 8 4.1 Dynamic Programming Algorithm . . . . . . . . . . . . . . . . . . . 8 4.2 Time Complexity . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 Chapter 5 Conclusion 10 References 11 | - |
| dc.language.iso | en | - |
| dc.subject | 深度學習 | zh_TW |
| dc.subject | 管線平行化 | zh_TW |
| dc.subject | 激活檢查點 | zh_TW |
| dc.subject | 動態規劃 | zh_TW |
| dc.subject | Dynamic Programming | en |
| dc.subject | Activation Checkpointing | en |
| dc.subject | Deep Learning | en |
| dc.subject | Pipeline Parallelism | en |
| dc.title | 多圖形處理器上深度學習網路訓練的記憶體優化 | zh_TW |
| dc.title | Optimizing Memory Usage in Deep Network Training with Multiple GPUs | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 洪鼎詠;吳真貞 | zh_TW |
| dc.contributor.oralexamcommittee | Ding-Yong Hong;Jan-Jan Wu | en |
| dc.subject.keyword | 深度學習,管線平行化,激活檢查點,動態規劃, | zh_TW |
| dc.subject.keyword | Deep Learning,Pipeline Parallelism,Activation Checkpointing,Dynamic Programming, | en |
| dc.relation.page | 13 | - |
| dc.identifier.doi | 10.6342/NTU202504398 | - |
| dc.rights.note | 同意授權(全球公開) | - |
| dc.date.accepted | 2025-08-15 | - |
| dc.contributor.author-college | 電機資訊學院 | - |
| dc.contributor.author-dept | 資訊工程學系 | - |
| dc.date.embargo-lift | 2025-08-21 | - |
| 顯示於系所單位: | 資訊工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-2.pdf | 929.27 kB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
