請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98937完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 何傳愷 | zh_TW |
| dc.contributor.advisor | Chuan-Kai Ho | en |
| dc.contributor.author | 湯皓宸 | zh_TW |
| dc.contributor.author | Hao-Chen Tang | en |
| dc.date.accessioned | 2025-08-20T16:21:24Z | - |
| dc.date.available | 2025-08-21 | - |
| dc.date.copyright | 2025-08-20 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-08-13 | - |
| dc.identifier.citation | Bhushan, B. (2009). Biomimetics: lessons from nature–an overview. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 367(1893), 1445-1486.
Byrnes, G., Lim, N. T. L., and Spence, A. J. (2008). Take-off and landing kinetics of a free-ranging gliding mammal, the Malayan colugo (Galeopterus variegatus). Proceedings of the Royal Society B: Biological Sciences, 275(1638), 1007-1013. Byrnes, G., and Spence, A. J. (2011). Ecological and biomechanical insights into the evolution of gliding in mammals. Integrative and comparative biology, 51(6), 991-1001. Clark, D. L., and Gillingham, J. C. (1990). Sleep-site fidelity in two Puerto Rican lizards. Animal Behaviour, 39(6), 1138-1148. Cortet, B., Colin, D., Dubois, P., Delcambre, B., and Marchandise, X. (1995). Les différentes méthodes d'analyse quantitative de la structure osseuse trabéculaire. Revue du rhumatisme (Ed. française), 62(11), 841-855. Colbert, E. H. (1967). Adaptations for gliding in the lizard Draco. American Museum novitates; no. 2283. Crandell, K. E., Herrel, A., Sasa, M., Losos, J. B., and Autumn, K. (2014). Stick or grip?Co-evolution of adhesive toepads and claws in Anolis lizards. Zoology, 117(6), 363-369. Darwin, C. (1859). On the Origin of Species. London: John Murray. Dehling, J. M. (2017). How lizards fly: a novel type of wing in animals. PloS one, 12(12), e0189573. Dudley, R., and Yanoviak, S. P. (2011). Animal aloft: the origins of aerial behavior and flight. Integrative and comparative biology, 51(6), 926-936. Dumont, E. R. (2010). Bone density and the lightweight skeletons of birds. Proceedings of the Royal Society B: Biological Sciences, 277(1691), 2193-2198. Emerson, S. B., and Koehl, M. A. R. (1990). The interaction of behavioral and morphological change in the evolution of a novel locomotor type: “flying” frogs. Evolution, 44(8), 1931-1946. Fajardo, R. J., Hernandez, E., and O’Connor, P. M. (2007). Postcranial skeletal pneumaticity: a case study in the use of quantitative microCT to assess vertebral structure in birds. Journal of Anatomy, 211(1), 138-147. Feduccia, A. (1993). Evidence from claw geometry indicating arboreal habits of Archaeopteryx. Science, 259(5096), 790-793. Fromhage, L., Jennions, M. D., Myllymaa, L., and Henshaw, J. M. (2024). Fitness as the organismal performance measure guiding adaptive evolution. Evolution, 78(6), 1039-1053. Galilei G. (1638). Dialogues concerning two new sciences. New York: Macmillan Company. Gregory, T. R. (2009). Understanding natural selection: essential concepts and common misconceptions. Evolution: Education and outreach, 2, 156-175. Habib, M. B., and Ruff, C. B. (2008). The effects of locomotion on the structural characteristics of avian limb bones. Zoological Journal of the Linnean Society, 153(3), 601-624. Kaliontzopoulou, A., Adams, D. C., van der Meijden, A., Perera, A., and Carretero, M. A. (2012). Relationships between head morphology, bite performance and ecology in two species of Podarcis wall lizards. Evolutionary Ecology, 26, 825-845. Khandelwal, P. C., Ross, S. D., Dong, H., and Socha, J. J. (2023). Convergence in gliding animals: Morphology, behavior, and mechanics. Convergent evolution: animal form and function (pp. 391-429). Kish, T. M. (2011). Study of the microstructure and mechanical properties of hummingbird wing-bones. (Doctoral dissertation, Massachusetts Institute of Technology). Kosin, R. (1934). The effect of weight and drag on the sinking speed and lift/drag ratio of gliders (No. NACA-TM-759). Lurie-Luke, E. (2014). Product and technology innovation: What can biomimicry inspire?Biotechnology advances, 32(8), 1494-1505. McGuire, J. A., and Dudley, R. (2005). The cost of living large: comparative gliding performance in flying lizards (Agamidae: Draco). The American Naturalist, 166(1), 93-106. McGuire, J. A., and Dudley, R. (2011). The biology of gliding in flying lizards (genus Draco) and their fossil and extant analogs. Integrative and Comparative Biology, 51(6), 983-990. Meiri, S. (2018). Traits of lizards of the world: Variation around a successful evolutionary design. Global ecology and biogeography, 27(10), 1168-1172. Miller, C. J., Trichilo, S., Pickering, E., Martelli, S., Delisser, P., Meakin, L. B., and Pivonka, P. (2021). Cortical thickness adaptive response to mechanical loading depends on periosteal position and varies linearly with loading magnitude. Frontiers in Bioengineering and Biotechnology, 9, 671606. Mohanty, N. P., Harikrishnan, S., and Vasudevan, K. (2016). Watch out where you sleep: nocturnal sleeping behaviour of Bay Island lizards. PeerJ, 4, e1856. Oliver, J. A. (1951). "Gliding" in Amphibians and Reptiles, with a Remark on an Arboreal Adaptation in the Lizard, Anolis carolinensis carolinensis Voigt. The American Naturalist, 85(822), 171-176. Olsen, K. M., and Wendel, J. F. (2013). Crop plants as models for understanding plant adaptation and diversification. Frontiers in plant science, 4, 290. Pamfilie, A. M., Garner, A. M., Russell, A. P., Dhinojwala, A., and Niewiarowski, P. H. (2023). Get to the point: Claw morphology impacts frictional interactions on rough substrates. Zoology, 157, 126078. Peter, Z. A., and Peyrin, F. (2011). Synchrotron radiation micro-CT imaging of bone tissue. Theory and applications of CT imaging and analysis, 233-254. Pyron, R. A., Burbrink, F. T., and Wiens, J. J. (2013). A phylogeny and revised classification of Squamata, including 4161 species of lizards and snakes. BMC evolutionary biology, 13, 1-54. Runestad, J. A., and Ruff, C. B. (1995). Structural adaptations for gliding in mammals with implications for locomotor behavior in paromomyids. American Journal of Physical Anthropology, 98(2), 101-119. Russell, A. P., and Dijkstra, L. D. (2001). Patagial morphology of Draco volans (Reptilia: Agamidae) and the origin of glissant locomotion in flying dragons. Journal of Zoology, 253(4), 457-471. Serrano, F. J., Costa-Pérez, M., Navalón, G., and Martín-Serra, A. (2020). Morphological disparity of the humerus in modern birds. Diversity, 12(5), 173. Sgrò, C. M., Lowe, A. J., and Hoffmann, A. A. (2011). Building evolutionary resilience for conserving biodiversity under climate change. Evolutionary applications, 4(2), 326-337. Siddall, R., Byrnes, G., Full, R. J., and Jusufi, A. (2021). Tails stabilize landing of gliding geckos crashing head-first into tree trunks. Communications biology, 4(1), 1020. Socha, J. J. (2002). Gliding flight in the paradise tree snake. Nature, 418(6898), 603-604. Turnbull, G., Chari, S., Li, Z., Yang, Z., Alam, C. M., Clemente, C. J., and Alam, P. (2023). The influence of claw morphology on gripping efficiency. Biology open, 12(5), bio059874. Ünver, Ş., Atan, T., Tosun, F. C., İslamoğlu, İ., and Kaplan, A. (2021). Dominant and non-dominant arm bone mineral density of racquet athletes. Journal of Men's Health, 17(2), 142-147. Vanhooydonck, B., Meulepas, G., Herrel, A., Boistel, R., Tafforeau, P., Fernandez, V., and Aerts, P. (2009). Ecomorphological analysis of aerial performance in a non-specialized lacertid lizard, Holaspis guentheri. Journal of Experimental Biology, 212(15), 2475-2482. Vernes, K. (2001). Gliding performance of the northern flying squirrel (Glaucomys sabrinus) in mature mixed forest of eastern Canada. Journal of Mammalogy, 82(4), 1026-1033. Wang, K., Che, J., Lin, S., Deepak, V., Aniruddha, D. R., Jiang, K., ... and Siler, C. D. (2019). Multilocus phylogeny and revised classification for mountain dragons of the genus Japalura sl. (Reptilia: Agamidae: Draconinae) from Asia. Zoological Journal of the Linnean Society, 185(1), 246-267. West, S. A., and Gardner, A. (2013). Adaptation and inclusive fitness. Current Biology, 23(13), R577-R584. Williams, T. S. (2022). Advancing research efforts in biomimicry to develop nature-inspired materials, processes for space exploration and more efficient aircraft. Biomimicry for aerospace, 385-421. Elsevier. Wolff, J. (1893). Das gesetz der transformation der knochen. DMW-Deutsche Medizinische Wochenschrift, 19(47), 1222-1224. Wu, N. C., Alton, L. A., Clemente, C. J., Kearney, M. R., and White, C. R. (2015). Morphology and burrowing energetics of semi-fossorial skinks (Liopholis spp.). The Journal of Experimental Biology, 218(15), 2416-2426. Yanoviak, S. P., Dudley, R., and Kaspari, M. (2005). Directed aerial descent in canopy ants. Nature, 433(7026), 624-626. Yuan, M. L., Wake, M. H., and Wang, I. J. (2019). Phenotypic integration between claw and toepad traits promotes microhabitat specialization in the Anolis adaptive radiation. Evolution, 73(2), 231-244. Zani. (2000). The comparative evolution of lizard claw and toe morphology and clinging performance. Journal of evolutionary biology, 13(2), 316-325. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98937 | - |
| dc.description.abstract | 雖然動力飛行的適應性演化已被廣泛研究,但與滑翔相關的形態適應仍有待釐清。飛蜥屬(Draco)是一個特別引人注目的例子,因為牠們是少數使用肋骨而非四肢來支撐翼膜的脊椎動物,有關於其全身性滑翔形態適應的綜合研究仍相當缺乏。本研究透過外部形態測量與微電腦斷層掃描(micro-CT),分析飛蜥亞科(Draconinae)共 30 種蜥蜴(包含 17 種會滑翔及 13 種不會滑翔的物種),以探討飛蜥在身體、骨骼與爪部形態上的滑翔適應特徵。結果顯示,飛蜥在多個身體系統中展現出協調的形態適應,以優化滑翔表現。例如身體的頭部、四肢及整體體型呈現一致性的縮小,可能有助於降低體重並使重心後移,以提升滑翔效率;同時,前肢與後肢之間的距離維持不變,以確保翼膜面積充足。在骨骼形態方面,飛蜥的非特殊肋骨較不滑翔物種薄,且肱骨與特殊肋骨的粗度增長均受到限制,呈現出長度延伸但重量增加受限的特徵,顯示牠們可能藉由拉長這些結構來最大化翼面積,同時避免增加過多重量而影響滑行。爪部形態方面則展現出一種獨特的適應組合:高曲率有助於提升攀爬抓握能力,而較短的爪長則可能降低著陸時結構失效的風險。這些發現顯示,飛蜥在演化滑翔能力的過程中,發展出跨系統的整合性形態變化,以達成減重、氣動性能與機械穩定性之平衡,進而揭示脊椎動物滑翔運動所面臨的演化限制與權衡。 | zh_TW |
| dc.description.abstract | While adaptive evolution in powered flight has been extensively studied, the morphological adaptations underlying gliding locomotion remain poorly understood. Flying lizards (Draco) represent a particularly intriguing case, as they are among the few vertebrate groups that utilize ribs rather than limbs to support their wing membranes. However, comprehensive studies of their whole-body morphological adaptations for gliding remain lacking. In this study, I investigated body, bone, and claw morphological adaptations for gliding in Draco lizards by analyzing 30 species in the subfamily Draconinae, including 17 gliding and 13 non-gliding species, using external morphological measurements and micro-computed tomography (micro-CT) scans. My results reveal that flying lizards exhibit coordinated morphological adaptations across multiple body systems to optimize gliding performance. Body morphology shows consistent size reduction in head, limbs, and overall body size, likely reducing mass and shifting the center of mass rearward to improve gliding efficiency, while the distance between forelimbs and hindlimbs is preserved to maintain adequate wing membrane area. Bone morphology demonstrates coordinated weight reduction patterns: non-specialized ribs are relatively thinner in flying lizards compared to non-gliding species, while both the humerus and specialized ribs exhibit constrained thickness growth relative to length, suggesting elongation to maximize wing area while minimizing weight gain. Claw morphology reveals a distinctive adaptation pattern, combining high curvature for enhanced arboreal grip with reduced length to minimize structural failure risk during landing. These findings demonstrate that gliding evolution in Draco lizards involves integrated morphological changes that appear to achieve an optimal balance between weight reduction, aerodynamic performance, and mechanical stability, providing insights into the evolutionary constraints and trade-offs that shape gliding locomotion in vertebrates. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-08-20T16:21:24Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-08-20T16:21:24Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 誌謝 ................................................................................................................................... i
中文摘要 ......................................................................................................................... iii Abstract ............................................................................................................................ iv Table of Contents ............................................................................................................. vi List of Figures ................................................................................................................ viii List of Tables ................................................................................................................. xiv Chatper 1 Introduction .................................................................................................. 1 Chatper 2 Materials and Methods ................................................................................. 6 Species description ....................................................................................................... 6 Body morphology ......................................................................................................... 8 CT scan of humerus and ribs ........................................................................................ 9 Claw measurement ..................................................................................................... 10 Statistical analysis ....................................................................................................... 11 Chatper 3 Results ........................................................................................................ 13 Body morphology ....................................................................................................... 13 Phylogenetically controlled .................................................................................... 13 Non-phylogenetically controlled ............................................................................ 14 Bone morphology ....................................................................................................... 15 Phylogenetically controlled .................................................................................... 15 Non-phylogenetically controlled ............................................................................ 18 Claw measurement ..................................................................................................... 21 Phylogenetically controlled .................................................................................... 21 Non-phylogenetically controlled ............................................................................ 22 Chatper 4 Discussion ................................................................................................... 24 Body morphology ....................................................................................................... 24 Bone morphology ....................................................................................................... 26 Claw measurement ..................................................................................................... 28 Limitations .................................................................................................................. 30 Chatper 5 Conclusions ................................................................................................ 32 Chatper 6 References .................................................................................................. 34 | - |
| dc.language.iso | en | - |
| dc.subject | 飛蜥屬 | zh_TW |
| dc.subject | 滑翔 | zh_TW |
| dc.subject | 特化形態 | zh_TW |
| dc.subject | 適應性演化 | zh_TW |
| dc.subject | 權衡 | zh_TW |
| dc.subject | Gliding | en |
| dc.subject | Draco | en |
| dc.subject | Specialized characteristics | en |
| dc.subject | Adaptive evolution | en |
| dc.subject | Trade-off | en |
| dc.title | 飛蜥滑翔之形態適應 | zh_TW |
| dc.title | Morphological and bone adaptations to gliding behaviors in flying lizards (Draco) | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.coadvisor | 黃文山 | zh_TW |
| dc.contributor.coadvisor | Wen-san Huang | en |
| dc.contributor.oralexamcommittee | 楊子睿;林展蔚 | zh_TW |
| dc.contributor.oralexamcommittee | Tzu-Ruei Yang;Jhan-Wei Lin | en |
| dc.subject.keyword | 滑翔,飛蜥屬,權衡,適應性演化,特化形態, | zh_TW |
| dc.subject.keyword | Gliding,Draco,Trade-off,Adaptive evolution,Specialized characteristics, | en |
| dc.relation.page | 60 | - |
| dc.identifier.doi | 10.6342/NTU202504097 | - |
| dc.rights.note | 同意授權(全球公開) | - |
| dc.date.accepted | 2025-08-15 | - |
| dc.contributor.author-college | 生命科學院 | - |
| dc.contributor.author-dept | 生態學與演化生物學研究所 | - |
| dc.date.embargo-lift | 2025-08-21 | - |
| 顯示於系所單位: | 生態學與演化生物學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-2.pdf | 2.33 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
