Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 電子工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98928
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor林浩雄zh_TW
dc.contributor.advisorHao-Hsiung Linen
dc.contributor.author周結zh_TW
dc.contributor.authorChieh Chouen
dc.date.accessioned2025-08-20T16:19:11Z-
dc.date.available2025-08-21-
dc.date.copyright2025-08-20-
dc.date.issued2025-
dc.date.submitted2025-08-14-
dc.identifier.citation[1] I. Aguilera, C. Friedrich, and S. Blügel, “Electronic phase transitions of bismuth under strain from relativistic self-consistent GW calculations,” Phys. Rev. B 91, 125129 (2015).
[2] R. Peierls, More Surprises in Theoretical Physics, Section 2.3, p. 27, Princeton Univ. Press, Princeton (1991).
[3] Z. Liu, C. X. Liu, Y. S. Wu, W. H. Duan, F. Liu, and J. Wu, “Stable nontrivial Z₂ topology in ultrathin Bi(111) films: A first principles study,” Phys. Rev. Lett. 107, 136805 (2011).
[4] T. Nagao, J. T. Sadowski, M. Saito, S. Yaginuma, Y. Fujikawa, T. Kogure, T. Ohno, Y. Hasegawa, S. Hasegawa, and T. Sakurai, “Nanofilm allotrope and phase transformation of ultrathin Bi film on Si(111)–7×7,” Phys. Rev. Lett. 93, 105501 (2004).
[5] D. L. Smith, Thin-Film Deposition: Principles and Practice, pp. 279–293, McGraw Hill Inc. (1995).
[6] J. W. Matthews, “Defects associated with the accommodation of misfit between crystals,” J. Vac. Sci. Technol. 12, 126 (1975).
[7] J. W. Matthews and A. E. Blakeslee, “Defects in epitaxial multilayers,” J. Cryst. Growth 27, 118 (1974).
[8] A. M. Munshi, D. L. Dheeraj, V. T. Fauske, D. C. Kim, A. T. J. van Helvoort, B. Fimland, and H. Weman, “Vertically aligned GaAs nanowires on graphite and few-layer graphene: Generic model and epitaxial growth,” Nano Lett. 12, 4570 (2012).
[9] Y. Tchoe, J. Jo, M. Kim, and G.-C. Yi, “Catalyst-free growth of InAs/InₓGa₁₋ₓAs coaxial nanorod heterostructures on graphene layers using molecular beam epitaxy,” NPG Asia Mater. 7, e206 (2015).
[10] S. Yaginuma, T. Nagao, J. T. Sadowski, M. Saito, K. Nagaoka, Y. Fujikawa, T. Sakurai, and T. Nakayama, “Origin of flat morphology and high crystallinity of ultrathin bismuth films,” Surf. Sci. 601, 3593 (2007).
[11] M. Kammler and M. Horn-von Hoegen, “Low energy electron diffraction of epitaxial growth of bismuth on Si(111),” Surf. Sci. 576, 56 (2005).
[12] A. J. Levin, M. R. Black, and M. S. Dresselhaus, “Indirect L to T point optical transition in bismuth nanowires,” Phys. Rev. B 79, 165117 (2009).
[13] Z. Zhang, X. Sun, M. S. Dresselhaus, J. Y. Ying, and J. Heremans, “Electronic transport properties of single-crystal bismuth nanowire arrays,” Phys. Rev. B 61, 4850 (2000).
[14] M. P. Vecchi and M. S. Dresselhaus, “Temperature dependence of the band parameters of bismuth,” Phys. Rev. B 10, 771 (1974).
[15] R. T. Isaacson and G. A. Williams, “Alfven-wave propagation in solid-state plasmas. III. Quantum oscillations of the Fermi surface of bismuth,” Phys. Rev. 185, 682 (1969).
[16] G. E. Smith, G. A. Baraff, and J. M. Rowell, “Effective g factor of electrons and holes in bismuth,” Phys. Rev. 135, A1118 (1964).
[17] Y.-M. Lin, X. Sun, and M. S. Dresselhaus, “Theoretical investigation of thermoelectric transport properties of cylindrical Bi nanowires,” Phys. Rev. B 62, 4610 (2000).
[18] S. Xiao, D. Wei, and X. Jin, “Bi(111) thin film with insulating interior but metallic surfaces,” Phys. Rev. Lett. 109, 166805 (2012).
[19] P. Kröger, D. Abdelbarey, M. Siemens, D. Lükermann, S. Sologub, H. Pfnür, and C. Tegenkamp, “Controlling conductivity by quantum well states in ultrathin Bi(111) films,” Phys. Rev. B 97, 045403 (2018).
[20] F. Gity, L. Ansari, M. Lanius, P. Schuffelgen, G. Mussler, D. Grützmacher, and J. C. Greer, “Reinventing solid state electronics: Harnessing quantum confinement in Bismuth thin films,” Appl. Phys. Lett. 110, 093111 (2017).
[21] P. Cucka and C. S. Barrett, “The crystal structure of Bi and of solid solutions of Pb, Sn, Sb and Te in Bi,” Acta Crystallogr. 15, 865 (1962).
[22] C. S. Barrett, “The structure of bismuth at low temperatures,” Aust. J. Phys. 13, 209 (1960).
[23] A. D. Krawitz, Introduction to Diffraction in Materials Science and Engineering, John Wiley & Sons, Danvers, MA (2001).
[24] T. Hirahara, T. Nagao, and S. Hasegawa, “Growth and surface structure of ultrathin Bi(111) films on Bi₂Te₃(111) substrates,” Phys. Rev. B 82, 155309 (2010).
[25] 吳佳軒, “應變鉍薄膜的結構特性,” 碩士論文(2022).
[26] T. Shirasawa, M. Ohyama, W. Voegeli, and T. Takahashi, “Interface of a Bi(001) film on Si(111)7×7 imaged by surface X-ray diffraction,” Phys. Rev. B 84, 075411 (2011).
[27] D. M. Fritz, D. A. Reis, B. Adams, R. A. Akre, J. Arthur, C. Blome, P. H. Bucksbaum, A. L. Cavalieri, S. Engemann, S. Fahy, R. W. Falcone, P. H. Fuoss, K. J. Gaffney, M. J. George, J. Hajdu, M. P. Hertlein, P. B. Hillyard, M. Horn-von Hoegen, M. Kammler, J. Kaspar, R. Kienberger, P. Krejcik, S. H. Lee, A. M. Lindenberg, B. McFarland, D. Meyer, T. Montagne, É. D. Murray, A. J. Nelson, M. Nicoul, R. Pahl, J. Rudati, H. Schlarb, D. P. Siddons, K. Sokolowski-Tinten, Th. Tschentscher, D. von der Linde, and J. B. Hastings, “Ultrafast bond softening in bismuth: Mapping a solid’s interatomic potential with X-rays,” Science 315, 633 (2007).
[28] Y. Eckstein, A. W. Lawson, and D. H. Reneker, “Elastic constants of bismuth,” J. Appl. Phys. 31, 1534 (1960).
[29] C. P. Herrero, “Dependence of the silicon lattice constant on isotopic mass,” Solid State Commun. 110, 243 (1999).
[30] Y. S. Touloukian, R. K. Kirby, R. E. Taylor, and P. D. Desai, “Thermal expansion – metallic elements and alloys,” Thermophysical Properties of Matter, vol. 12, IFI/Plenum, New York (1975).
[31] L. E. Koutsokeras and G. Abadía, “Intrinsic stress in ZrN thin films: Evaluation of grain boundary contribution from in situ wafer curvature and ex situ x-ray diffraction techniques,” J. Appl. Phys. 111, 093509 (2012).
[32] P. Fischer, I. Sosnowska, and M. Szymanski, “Debye-Waller factor and thermal expansion of arsenic, antimony and bismuth,” J. Phys. C: Solid State Phys. 11, 1043 (1978).
[33] P. Li, I.-W. Chen, and J. E. Penner-Hahn, “X-ray-absorption studies of zirconia polymorphs. III. Static distortion and thermal distortion,” Phys. Rev. B 48, 10082 (1993).
[34] H. Zhang, D. J. Srolovitz, J. F. Douglas, and J. A. Warren, “Grain boundaries exhibit the dynamics of glass-forming liquids,” Proc. Natl. Acad. Sci. U.S.A. 106, 7735 (2009).
[35] 蔡連晉, “鉍奈米線陣列氦離子束微影製備與其能隙分析,” 碩士論文(2024).
[36] B. Lax and J. G. Mavroides, “Cyclotron resonance in metals,” Solid State Phys. 11, 261 (1960).
[37] 洪岦奇, “鉍薄膜的霍爾效應與場效特性分析,” 碩士論文(2021).
[38] S. Sangiao, J. M. Michalik, L. Casado, M. C. Martínez-Velarte, L. Morellón, M. R. Ibarra, and J. M. De Teresa, “Conductance steps in electromigrated Bi nanoconstrictions,” Phys. Chem. Chem. Phys. 15, 5132 (2013)
[39] 謝依珊, “鉍奈米線的製作與其傳導特性研究,” 碩士論文(2022).
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98928-
dc.description.abstract本論文探討鉍(Bi)薄膜於 Si(111) 基板上的類凡德瓦磊晶成長特性,結合 EBSD、TEM 與變溫 XRD 量測,分析其在低維尺度下的結構性質,並進一步延伸至奈米線製程與能帶模擬,探討尺寸與晶向對其量子侷限與電子傳輸行為的影響。
在實驗與量測分析部分,本研究採用分子束磊晶技術於 Si(111) 基板上沉積 Bi 薄膜,透過低溫成長條件(5–120 °C)與超高真空環境(~10⁻⁹ Torr)控制原子層級的成長行為。為配合低溫條件,於樣品載台表面鍍上一層 1 µm 厚的 GaAs 層,以改善輻射熱交換、穩定溫度並提升重現性。成長過程中使用反射式高能電子繞射(RHEED)進行 in-situ 觀測,確認薄膜在初期即展現二維層狀的生長模式,並與基板形成明確的晶向對齊關係。
薄膜沉積後,利用 EBSD、SAED 與高解析 X 光繞射等方法,觀察 Bi 薄膜在 Si(111) 表面的類凡德瓦磊晶堆疊特性。結果顯示,薄膜於垂直方向主要沿 Bi(0001) 成長,水平方向則傾向與基板形成 Si[–110] || Bi[–1–120] 的對齊關係,對應 6×6 Bi : 7×7 Si 的重合點晶格(coincidence site lattice)。另亦觀察到約 4.7° 偏轉的次穩排列模式,對應 3√3 × 3√3 Bi : √37 × √37 Si 的重合晶格,反映 Bi/Si 的對齊關係存在多種可能。水平方向亦觀察到孿晶與晶界的形成,其中較薄樣品更常出現晶向旋轉偏差,顯示薄膜堆疊行為受到基板表面週期的影響,呈現類凡德瓦磊晶特徵性的界面特性。
本研究亦擬合 Bi 薄膜的 bilayer 厚度與層間距比值(b/d),結果顯示各樣品皆穩定維持在 0.404–0.407 範圍,顯示雙層厚度 b 會隨垂直應變略為調整,並與堆疊週期保持比例一致,反映 Bi 薄膜可在類凡德瓦磊晶條件下穩定維持其層狀結構。此外,垂直與水平方向的晶格應變關係,顯著偏離 bulk Bi 的彈性響應,顯示晶界與基板對齊對薄膜應變行為具關鍵影響。
在能帶特性部分,本研究以鉍奈米線為模型系統,結合 Lax 模型與有限差分法,模擬不同寬度與晶向下的量子侷限效應。模擬結果指出,薄膜侷限條件下的能隙主要由電子能帶抬升主導,而在奈米線結構中,電洞能帶亦出現顯著變化。此外,特定傳輸方向(如沿 binary 軸)的電子因其橫向有效質量較大,較不易受到侷限作用,導致整體能隙開啟受限。然而該方向雖難以開啟能隙,但由於傳輸有效質量較小,反而具備較佳的載子傳輸特性,顯示出量子侷限與導通性能間的取捨關係。
為驗證上述模型,本研究採用由實驗室學弟蔡連晉製備並完成電性量測之 Bi(11-20) 奈米線陣列樣品,其厚度由 MBE 磊晶控制為 12 nm,通道寬度則以氦離子束微影定義於 20–500 nm。實驗結果顯示,當線寬縮小至 20–30 nm 時,片電阻與等效能隙會顯著上升,其中 20 nm 元件擬合得 ΔE 約為 360 meV。本研究以此實驗結果為依據進行能帶模擬,所得趨勢與實測資料高度一致,驗證本模型對 Bi 奈米線量子侷限行為的預測能力。
整體而言,本研究建立從薄膜磊晶至奈米線能帶調控的實驗與模擬架構,說明 Bi 材料於矽基平台中因侷限與方向性所導致的結構與電子性質變化,並為鉍的低維元件設計提供物理依據。
zh_TW
dc.description.abstractThis dissertation investigates the quasi–van der Waals epitaxial growth characteristics of bismuth (Bi) thin films on Si(111) substrates. By combining EBSD, TEM, and variable-temperature X-ray diffraction (XRD) measurements, we analyze the structural properties of Bi films at low dimensional scales. The study further extends to nanowire fabrication and band structure modeling to explore how size and crystallographic orientation influence quantum confinement and electronic transport behavior.
For experimental analysis, Bi thin films were deposited on Si(111) substrates via molecular beam epitaxy (MBE) under low-temperature (5–120 °C) and ultra-high vacuum (~10⁻⁹ Torr) conditions to control atomic-scale growth. A 1 µm GaAs layer was coated on the sample holder to improve radiative heat exchange and ensure thermal stability. In-situ reflection high-energy electron diffraction (RHEED) confirmed that the films adopted a two-dimensional layered growth mode and formed a well-aligned epitaxial relationship with the substrate.
Post-growth structural characterization using EBSD, SAED, and high-resolution XRD revealed that the Bi films predominantly grow along the Bi(0001) direction, with an in-plane alignment of Si[–110] || Bi[–1–120], corresponding to a 6×6 Bi : 7×7 Si coincidence site lattice (CSL). In addition, a metastable configuration with ~4.7° rotation was observed, matching a 3√3 × 3√3 Bi : √37 × √37 Si CSL, indicating the presence of multiple interface arrangements. Twin domains and grain boundaries were found, especially in thinner films, suggesting that the periodicity of the substrate surface affects the stacking behavior, consistent with characteristics of quasi–van der Waals epitaxy.
We analyzed the ratio between bilayer thickness and interlayer spacing (b/d) across multiple diffraction planes. All samples maintained a stable b/d of 0.404–0.407, indicating that bilayer thickness adjusts slightly under out-of-plane strain while preserving a consistent stacking proportion. This suggests that Bi films retain a stable layered structure under quasi–van der Waals conditions. The strain coupling between out-of-plane and in-plane lattice constants deviates markedly from bulk elastic predictions, underscoring the roles of grain boundaries and epitaxial alignment in thin-film Bi.
To examine band structure characteristics, Bi nanowires were modeled using the Lax model and finite difference method, evaluating quantum confinement for various widths and orientations. Simulations show that in confined Bi films, bandgap opening is mainly driven by conduction band shifts, whereas in nanowires, valence band shifts also become significant. Certain transport directions (e.g., the binary axis) exhibit larger transverse effective masses, leading to weaker confinement and smaller bandgap openings, but also smaller transport masses and higher mobility—revealing a trade-off between confinement and conductivity.
For model validation, Bi(11-20) nanowire arrays fabricated by our lab member Lien-Chin Tsai were grown via MBE to 12 nm thickness and patterned by helium ion beam lithography into 20–500 nm channels. Electrical measurements showed a pronounced increase in sheet resistance and effective bandgap for widths below 30 nm, with the 20 nm device yielding ΔE ~ 360 meV. Simulations closely matched these trends, confirming the model’s predictive capability for Bi nanowire quantum confinement.
This work integrates experimental and modeling approaches, linking thin-film epitaxy with band structure modulation in Bi nanowires, and clarifies structure–property relationships governed by dimensional confinement and crystallographic orientation, providing a solid basis for low-dimensional Bi-based device design.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-08-20T16:19:11Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-08-20T16:19:11Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents致謝 I
摘要 II
Abstract IV
目次 VI
圖次 IX
表次 XII
第一章 緒論 1
1.1 研究背景 1
1.1.1 鉍的晶體結構 1
1.1.2 鉍的磊晶研究 2
1.1.3 鉍的量子侷限效應 4
1.2 研究動機 6
1.3 論文架構 7
第二章 鉍薄膜磊晶與測定方式 8
2.1 鉍/矽(111)基板的分子束磊晶 8
2.2 磊晶特性的測定 12
2.2.1 X光繞射分析 12
2.2.2 電子背向散射繞射分析 15
2.2.3 穿透式電子顯微鏡量測 16
第三章 鉍/矽(111)基板的凡德瓦爾磊晶特性 18
3.1 鉍薄膜中的孿晶特性 18
3.1.1 Bi(0003) 繞射峰的 ω–2θ 分析 18
3.1.2 孿晶與水平方向晶向分佈特性 19
3.2 鉍/矽(111)基板的對齊模型 24
3.2.1 φ 掃描與 EBSD 分析:早期成長階段鉍薄膜的晶體取向分佈 24
3.2.2 鉍/矽(111)基板的 coincidence site model 26
3.3 Relaxed Bi 薄膜的晶格結構分析與方法建立 28
3.3.1 晶格常數 a 與 c 的量測 28
3.3.2 鉍雙層厚度與雙層間距比值 b/d 的決定 30
3.4 鉍薄膜的應變特性 32
3.4.1 鉍薄膜中的應變起源 32
3.4.2 strained Bi 晶格常數 c、a、b 的量測分析 33
3.4.3 Bi 薄膜的 c–a 關係分析 41
3.5 結論 43
第四章 鉍晶體的變溫特性分析 45
4.1 變溫X光繞射量測與準確度評估 45
4.2 Bi(000m) 多階繞射面變溫X光繞射結果 48
4.3 變溫 DWF 分析 53
4.4 結論 57
第五章 鉍奈米線的二維量子侷限效應 58
5.1 鉍的布里淵區與費米面 58
5.1.1 鉍等效質量的各向異性 58
5.1.2 鉍的能帶結構以及非拋物線性的電子能帶 61
5.2 二維量子侷限效應的數值計算 64
5.2.1 有效質量模型與理論推導 64
 次能帶(subband)展開形式展開形式 65
5.2.2 幾何結構與邊界條件 65
5.2.3 二維橫截面之有限差分離散法建構 66
5.2.4 非拋物線性能帶處理(L 點電子) 67
5.2.5 與解析解之比對驗證 68
5.3 量子侷限效應計算結果 68
5.4 鉍奈米線的電傳輸特性 74
5.4.1 鉍奈米線的製備與電性量測 75
5.4.2 鉍奈米線的等效能隙計算 79
5.5 結論 82
第六章 結論 84
參考文獻 86
-
dc.language.isozh_TW-
dc.subject鉍薄膜zh_TW
dc.subject類凡德瓦磊晶zh_TW
dc.subject變溫 X 光繞射zh_TW
dc.subject雙層結構分析zh_TW
dc.subject量子侷限效應zh_TW
dc.subjectQuantum confinement effecten
dc.subjectQuasi–van der Waals epitaxyen
dc.subjectVariable-temperature X-ray diffractionen
dc.subjectBi-layer structure analysisen
dc.subjectBismuth thin filmen
dc.title鉍薄膜於 Si(111) 基板上的類凡德瓦磊晶行為與奈米線的量子侷限效應研究zh_TW
dc.titleStudy on Quasi–van der Waals Epitaxy of Bismuth Thin Films on Si(111) and Quantum Confinement Effects in Bismuth Nanowiresen
dc.typeThesis-
dc.date.schoolyear113-2-
dc.description.degree博士-
dc.contributor.oralexamcommittee胡振國;毛明華;陳建宏;王智祥;陳奕君zh_TW
dc.contributor.oralexamcommitteeJenn-Gwo Hwu;Ming-Hua Mao;Edward Chen;Jyh-Shyang Wang;I-Chun Chengen
dc.subject.keyword鉍薄膜,類凡德瓦磊晶,變溫 X 光繞射,雙層結構分析,量子侷限效應,zh_TW
dc.subject.keywordBismuth thin film,Quasi–van der Waals epitaxy,Variable-temperature X-ray diffraction,Bi-layer structure analysis,Quantum confinement effect,en
dc.relation.page89-
dc.identifier.doi10.6342/NTU202504371-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2025-08-15-
dc.contributor.author-college電機資訊學院-
dc.contributor.author-dept電子工程學研究所-
dc.date.embargo-lift2025-08-21-
顯示於系所單位:電子工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-113-2.pdf4.84 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved