請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98924完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 黃倬英 | zh_TW |
| dc.contributor.advisor | Cho-ying Huang | en |
| dc.contributor.author | 沈姿雨 | zh_TW |
| dc.contributor.author | Zih-Yu Shen | en |
| dc.date.accessioned | 2025-08-20T16:18:15Z | - |
| dc.date.available | 2025-08-21 | - |
| dc.date.copyright | 2025-08-20 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-08-14 | - |
| dc.identifier.citation | 內政部國土測繪圖資服務雲(2024)。正射影像圖(臺灣通用)。取自https://maps.nlsc.gov.tw/S09SOA/homePage.action?Language=ZH 。
中華民國內政部國土測繪中心(2023)。土地利用分級分類109年以後。取自https://ws.moi.gov.tw/Download.ashx?u=LzAwMS9VcGxvYWQvNDA3L3JlbGZpbGUvOTI3My8zMTkzLzIxOGM3MWI3LTU2NTctNDg4NC1hOWEyLTU1Zjk1MjhmOWFkNi5wZGY%3d&n=5Zyf5Zyw5Yip55So5YiG57Sa5YiG6aGe57O757Wx6KGo6Zm45Z%2bf6YOo5Lu9LnBkZg%3d%3d 。 農業部農糧署(2024)。農情報告資源網。取自 https://agr.afa.gov.tw/afa/afa_frame.jsp 。 Alimohammadlou, Y., Najafi, A., & Yalcin, A. (2013). Landslide process and impacts: A proposed classification method. Catena, 104, 219-232. Asner, G. P., & Lobell, D. B. (2000). A biogeophysical approach for automated SWIR unmixing of soils and vegetation. Remote Sensing of Environment, 74(1), 99-112. https://doi.org/10.1016/s0034-4257(00)00126-7 Bosch, W., Dettmering, D., & Schwatke, C. (2014). This calibration step was crucial for ensuring the comparability of annual AutoMCU results, particularly in identifying year-to-year fluctuations in soil exposure related to landslide activity. Remote Sensing, 6, 2255-2281. https://doi.org/10.3390/rs6032255 Chander, G., Hewison, T. J., Fox, N., Wu, X., Xiong, X., & Blackwell, W. J. (2013). Overview of Intercalibration of Satellite Instruments. IEEE Transactions on Geoscience and Remote Sensing, 51(3), 1056-1080. https://doi.org/10.1109/TGRS.2012.2228654 Che, X., Zhang, H. K., & Liu, J. (2021). Making Landsat 5, 7 and 8 reflectance consistent using MODIS nadir-BRDF adjusted reflectance as reference. Remote Sensing of Environment, 262. https://doi.org/10.1016/j.rse.2021.112517 Chen, C.-S., Chen, Y.-L., Liu, C.-L., Lin, P.-L., & Chen, W.-C. (2007). Statistics of Heavy Rainfall Occurrences in Taiwan. Weather and Forecasting, 22(5), 981–1002. https://doi.org/10.1175/WAF1033.1 Chen, H., Dadson, S., & Chi, Y.-G. (2006). Recent rainfall-induced landslides and debris flow in northern Taiwan. Geomorphology, 77, 112–125. https://doi.org/10.1016/j.geomorph.2006.01.002 Chen, P. H., Lin, R. H., Chiu, C. F., & Lin, Y. S. (2025). Mitigating low‐temperature frost damage in Taiwan high‐altitude tea cultivation: physiological insight and protective strategies. Planta, 261(125), 19. https://doi.org/10.1007/s00425-025-04704-2 Chen, Y., Jiang, Y., Duan, J., Shi, J., Xue, S., & Kakuda, Y. (2010). Variation in catechin contents in relation to quality of ‘Huang Zhi Xiang’ Oolong tea (Camellia sinensis) at various growing altitudes and seasons. Food Chemistry, 119(2), 648-652. https://doi.org/10.1016/j.foodchem.2009.07.014 Costa, J. E., & Schuster, R. L. (1987). The formation and failure of natural dams . 87-392. https://doi.org/10.3133/ofr87392 Digra, M., Dhir, R., & Sharma, N. (2022). Land use land cover classification of remote sensing images based on the deep learning approaches: a statistical analysis and review. Arabian Journal of Geosciences, 15. https://doi.org/10.1007/s12517-022-10246-8 Dou, Q. (2019). Tea in Health and Disease. Nutrients, 11(929), 4. https://doi.org/10.3390/nu11040929 FAO. (2022). International tea market: market situation, prospects and emerging issues. Garcia-Chevesich, P., Wei, X., Ticona, J., Martínez, G., Zea, J., García, V., Alejo, F., Zhang, Y., Flamme, H., Graber, A., Santi, P., McCray, J., Gonzáles, E., & Krahenbuhl, R. (2021). The Impact of Agricultural Irrigation on Landslide Triggering: A Review from Chinese, English, and Spanish Literature. Water, 13(10). https://doi.org/10.3390/w13010010 Gariano, S. L., & Guzzetti, F. (2016). Landslides in a changing climate. Earth-Science Reviews, 162, 227-252. https://doi.org/10.1016/j.earscirev.2016.08.011 Garwood, N. C., Janos, D. P., & Brokaw, N. (1979). Earthquake-Caused Landslides: A Major Disturbance to Tropical Forests. Science, 205(4410), 997-999. https://doi.org/10.1126/science.205.4410.997 GDAL/OGR contributors. (2024). GDAL/OGR Geospatial Data Abstraction software Library. https://doi.org/10.5281/zenodo.5884351 Geertsema, M., Highland, L., & Vaugeouis, L. (2009). Environmental Impact of Landslides. In K. Sassa & P. Canuti (Eds.), Landslides – Disaster Risk Reduction (pp. 589-607). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-540-69970-5_31 Gorelick, N., Hancher, M., Dixon, M., Ilyushchenko, S., Thau, D., & Moore, R. (2017). Google Earth Engine: Planetary-scale geospatial analysis for everyone. . Remote Sensing of Environment. https://doi.org/10.1016/j.rse.2017.06.031 Gu, T.-f., Zhang, M.-s., Wang, J.-d., Wang, C.-x., Xu, Y.-j., & Wang, X. (2019). The effect of irrigation on slope stability in the Heifangtai Platform, Gansu Province, China. Engineering Geology, 248, 346-356. https://doi.org/10.1016/j.enggeo.2018.10.026 Guariguata, M. R. (1990). Landslide Disturbance and Forest Regeneration in the Upper Luquillo Mountains of Puerto Rico. Journal of Ecology, 78(3), 814-832. https://doi.org/https://doi.org/10.2307/2260901 Guennebaud, G., Jacob, B., & others. (2010). Eigen v3. http://eigen.tuxfamily.org. http://eigen.tuxfamily.org Han, W., Huang, J., & Li, X. e. a. (2016). Altitudinal effects on the quality of green tea in east China: a climate change perspective. European Food Research and Technology, 243(2), 323-330. https://doi.org/https://doi.org/10.1007/s00217-016-2746-5 Han, W. Y., Huang, J. G., Li, X., Li, Z. X., Ahammed, G. J., Yan, P., & Stepp, J. R. (2017). Altitudinal effects on the quality of green tea in east China: a climate change perspective. European Food Research and Technology, 243, 323-330. https://doi.org/10.1007/s00217-016-2746-5 Haq, S. u., & Boz, I. (2018). Developing a set of indicators to measure sustainability of tea cultivating farms in Rize Province, Turkey. Ecological Indicators, 95(1), 219-232. https://doi.org/10.1016/j.ecolind.2018.07.041 He, K., Zhang, X., Ren, S., & Sun, J. (2015). Deep Residual Learning for Image Recognition. https://doi.org/10.48550/arXiv.1512.03385 Highland, L., & Bobrowsky, P. (2008). The Landslide Handbook – A Guide to Understanding Landslides. Hou, X., Vanapalli, S. K., & Lia, T. (2018). Water infiltration characteristics in loess associated with irrigation activities and its influence on the slope stability in Heifangtai loess highland, China. Engineering Geology, 234, 27-37. https://doi.org/10.1016/j.enggeo.2017.12.020 Huang, C., Chai, C., Chang, C., Huang, J., Hu, K., Lu, M., & Chung, Y. (2013). An Integrated Optical Remote Sensing System for Environmental Perturbation Research. Ieee Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 6(6), 2434-2444. https://doi.org/10.1109/jstars.2013.2250489 Imaizumi, F., Sidle, R. C., & Kamei, a. R. (2008). Effects of forest harvesting on the occurrence of landslides and debris flows in steep terrain of central Japan. Earth Surface Processes and Landforms, 33. https://doi.org/10.1002/esp.1574 Jafarzadeh, H., & Hasanlou, M. (2019). An Unsupervised Binary and Multiple Change Detection Approach for Hyperspectral Imagery Based on Spectral Unmixing. Ieee Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 12(12). https://doi.org/10.1109/JSTARS.2019.2939133 Karabağ, C., Verhoeven, J., Miller, N. R., & Reyes-Aldasoro, C. C. (2019). Texture Segmentation: An Objective Comparison between Five Traditional Algorithms and a Deep-Learning U-Net Architecture. Applied Sciences, 9(18). https://doi.org/10.3390/app9183900 Kelsey, H. M. (1978). Earthflows in Franciscan melange, Van Duzen River basin, California. Geology, 6(6), 361-364. https://doi.org/10.1130/0091-7613(1978)6<361:EIFMVD>2.0.CO;2 Khatami, R., Mountrakis, G., & Stehman, S. V. (2016). A meta-analysis of remote sensing research on supervised pixel-based land-cover image classification processes: General guidelines for practitioners and future research. Remote Sensing of Environment, 177, 89-100. https://doi.org/10.1016/j.rse.2016.02.028 Kjekstad, O., & Highland, L. (2009). Economic and Social Impacts of Landslides. In K. Sassa & P. Canuti (Eds.), Landslides – Disaster Risk Reduction (pp. 573-587). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-540-69970-5_30 Knapen, A., Kitutu, M. G., Poesen, J., Breugelmans, W., Deckers, J., & Muwanga, A. (2006). Landslides in a densely populated county at the footslopes of Mount Elgon (Uganda): Characteristics and causal factors. Geomorphology, 73, 149–165. https://doi.org/https://doi.org/10.1016/j.geomorph.2005.07.004 Kressler, F. P., & Steinnocher, K. T. (1999). Detecting land cover changes from NOAA-AVHRR data by using spectral mixture analysis. International Journal of Applied Earth Observation and Geoinformation, 1(1), 21-26. https://doi.org/10.1016/S0303-2434(99)85024-7 Lacroix, P., Dehecq, A., & Taipe, E. (2020). Irrigation-triggered landslides in a Peruvian desert caused by modern intensive farming. Nature Geoscience, 13, 56-60. https://doi.org/10.1038/s41561-019-0500-x Liu, W., Bai, R., Sun, X., Yang, F., Zhai, W., & Su, X. (2024). Rainfall- and Irrigation-Induced Landslide Mechanisms in Loess Slopes: An Experimental Investigation in Lanzhou, China. atmosphere, 15(162). https://doi.org/10.3390/atmos15020162 Microsoft. (2024). Visual Studio Code. In (Version 1.90.0) Papaskiri, T. V., Peng, Y., Kasyanov, A. E., Semochkin, V. N., Ananicheva, E. P., & Volkov, I. V. (2019). Methods of land management when locating tea plantations. Earth and Environmental Science, 350, 5. https://doi.org/10.1088/1755-1315/350/1/012067 Persichillo, M. G., Bordoni, M., & Meisina, C. (2017). The role of land use changes in the distribution of shallow landslides. Science of the Total Environment, 574, 924–937. https://doi.org/10.1016/j.scitotenv.2016.09.125 Plafker, G., Ericksen, G. E., & Fernández Concha, J. (1971). Geological aspects of the May 31, 1970, Perú earthquake*. Bulletin of the Seismological Society of America, 61(3), 543-578. https://doi.org/10.1785/bssa0610030543 Qu, L. a., Li, M., Chen, Z., Liu, W., Zhi, J., & Zhang, L. (2022). Mapping large area tea plantations using progressive random forest and Google Earth Engine. Journal of Applied Remote Sensing, 16(2). https://doi.org/10.1117/1.JRS.16.024509 Rashed, T., Weeks, J. R., Stow, D., & Fugate, D. (2006). Measuring temporal compositions of urban morphology through spectral mixture analysis: toward a soft approach to change analysis in crowded cities. International Journal of Remote Sensing 26(4), 699-718. https://doi.org/10.1080/01431160512331316874 Ren, X., Lin, M., Liu, J., Khan, W., Zhao, H., Sun, B., Liu, S., & Zheng, P. (2025). Effects of Altitude on Tea Composition: Dual Regulation by Soil Physicochemical Properties and Microbial Communities. Plants, 14(1642). https://doi.org/10.3390/plants14111642 Ronneberger, O., Fischer, P., & Brox, T. (2015). U-Net: Convolutional Networks for Biomedical Image Segmentation. https://doi.org/10.48550/arXiv.1505.04597 Schuster, R. L., & Highland, L. M. (2001). Socioeconomic and environmental impacts of landslides in the Western Hemisphere. 2001-276, 47. https://doi.org/10.3133/ofr01276 Schuster, R. L., & Highland, L. M. (2007). Overview of the Effects of Mass Wasting on the Natural Environment. Environmental and Engineering Geoscience, 13(1), 25-44. https://doi.org/10.2113/gseegeosci.13.1.25 Statista. (2025). Tea - Worldwide. https://www.statista.com/outlook/cmo/hot-drinks/tea/worldwide Team, R. C. (2024). R: A language and environment for statistical computing. . In R Foundation for Statistical Computing. https://www.R-project.org/ Ungar, S. G., Pearlman, J. S., Mendenhall, J. A., & Reuter, D. (2003). Overview of the Earth Observing One (EO-1) mission. IEEE Transactions on Geoscience and Remote Sensing, 41, 11. https://doi.org/10.1109/TGRS.2003.815999 Vanneste, M., Mienert, J., & Bünz, S. (2006). The Hinlopen Slide: A giant, submarine slope failure on the northern Svalbard margin, Arctic Ocean. Earth and Planetary Science Letters, 245(1-2), 373-388. Wang, Li, J., Jin, X., & Xiao, H. (2018). Mapping Tea Plantations from Multi-seasonal Landsat-8 OLI Imageries Using a Random Forest Classifier. Journal of the Indian Society of Remote Sensing, 47(8), 1315–1329. https://doi.org/10.1007/s12524-019-01014-5 Wang, R., Gamon, J. A., Cavender-Bares, J., Townsend, P. A., & Zygielbaum, A. I. (2018). The spatial sensitivity of the spectral diversity–biodiversity relationship: an experimental test in a prairie grassland. Ecological Applications, 28(2), 541-556. https://doi.org/10.1002/eap.1669 Wu, C. D., & Wei, G. (2009). 19 - Tea as a functional food for oral health. Woodhead Publishing. https://doi.org/10.1533/9781845696290.2.396 Xu, W., Song, Q., Li, D., & Wan, X. (2012). Discrimination of the Production Season of Chinese Green Tea by Chemical Analysis in Combination with Supervised Pattern Recognition. Journal of Agricultural and Food Chemistry, 60(28), 7064−7070. https://doi.org/dx.doi.org/10.1021/jf301340z Yanites, B. J., Mitchell, N. A., Bregy, J. C., Carlson, G. A., Cataldo, K., Holahan, M., Johnston, G. H., Nelson, A., Valenza, J., & Wanker, M. (2018). Landslides control the spatial and temporal variation of channel width in southern Taiwan: Implications for landscape evolution and cascading hazards in steep, tectonically active landscapes. Earth Surface Processes and Landforms, 43, 1782–1797. https://doi.org/10.1002/esp.4353 Zhao, C., & Lu, Z. (2018). Remote Sensing of Landslides—A Review. Remote Sensing, 10(279). https://doi.org/10.3390/rs10020279 | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98924 | - |
| dc.description.abstract | 臺灣山區的茶產業是重要的經濟活動,但過去研究指出,森林轉為茶園等土地使用變化,可能提升崩塌與土壤流失風險。然而,茶樹具有密集根系且多配備完善排水系統,也可能發揮穩定坡地的正面效果。本研究以大阿里山地區為對象,結合中高解析度衛星影像與空間分析技術,深入探討茶園是否對崩塌地發生具有顯著影響。首先,我們以U-net深度學習模型結合Sentinel-2多時序影像、數值地表模型與地面實測資料,進行土地使用分類,獲得高準確度(整體準確度與茶園的使用者/生產者準確度均超過90%)的分類結果。接著,使用Landsat地表反射率影像進行Bayesian MAP光譜校正,確保多源影像的一致性,再以AutoMCU光譜混合分析法(SMA)推估崩塌地之土壤比例,建構跨年度的崩塌地分布圖。最後,透過環域分析(buffer analysis),計算不同土地使用類型周圍各距離範圍內之崩塌地面積與變化量。結果顯示,整體崩塌地面積在近20年間有下降趨勢。環域分析亦發現,茶園周圍400公尺內的崩塌風險相對較高,但其變化幅度不若森林明顯,且土壤比例變化速率在400公尺後趨於平緩,顯示其影響具有空間限制。整體而言,茶園並未導致明顯高於其他地類的崩塌風險,反而可能因管理設施而具有緩坡穩定的潛力。該結果有助於重新評估山地農業與地景穩定性之間的關係,並作為未來永續農業規劃的參考依據。 | zh_TW |
| dc.description.abstract | Tea cultivation is a key component of mountainous agriculture in Taiwan. While previous studies have suggested that land use changes—particularly forest conversion to tea plantations—may increase the risk of landslides and soil erosion, tea plantations also feature dense root systems and well-designed drainage infrastructure, potentially mitigating such hazards. This study investigates whether tea plantations contribute to landslide occurrence in the Greater Ali Mountain region by integrating remote sensing, spectral analysis, and spatial modeling. We first applied a U-net deep learning model to classify land use and land cover (LULC) using multi-season Sentinel-2 imagery, a digital surface model (DSM), and ground truth data. The resulting LULC maps achieved high classification performance, with overall accuracy and both user’s and producer’s accuracy for tea plantations exceeding 90%. To generate consistent surface reflectance values across Landsat imagery, we conducted Bayesian Maximum A Posteriori (MAP) spectral correction. Landslide mapping was then performed using the AutoMCU spectral mixture analysis (SMA) model, which estimates sub-pixel fractions of photosynthetic vegetation (PV), non-photosynthetic vegetation (NPV), and soil, enabling accurate landslide delineation based on elevated soil fractions. Buffer analysis was employed to assess the spatial distribution of landslide-prone areas around different LULC types. Results show that total landslide area has decreased steadily over the past two decades. While a higher landslide density was observed within 400 meters of tea plantations, the magnitude of change was less pronounced than that surrounding forests. The rate of change in soil proportion also declined beyond the 400-meter threshold, indicating spatially limited influence. These findings suggest that tea plantations do not significantly exacerbate landslide hazards and may, in some cases, contribute to slope stability. This research offers new insights into the complex relationship between mountainous agriculture and landscape hazards and provides a valuable reference for sustainable land management in hilly regions. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-08-20T16:18:15Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-08-20T16:18:15Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 誌謝 i
中文摘要 ii ABSTRACT iii CONTENTS v LIST OF FIGURES vii LIST OF TABLES x Chapter 1 Introduction 1 Chapter 2 Methods 5 2.1 Study area 5 2.2 Image processing for land use classification 6 2.3 Convolutional neural network model 7 2.4 Ground truth data for land use classification 8 2.5 Model performance evaluation 9 2.6 Landslide analysis 10 2.7 Spectral mixture analysis method 11 2.8 Relationships between tea plantations and landslides 13 Chapter 3 Results 17 3.1 Land use and land cover 17 3.2 Uncalibrated AutoMCU Analysis Results 20 3.3 AutoMCU Analysis Results After Spectral Calibration 22 3.4 Buffer Analysis of Landslide Distribution Across Different Land Use Types 24 3.5 Topographic Analysis 29 Chapter 4 Discussion 31 4.1 Land use and land cover 31 4.2 Landslides 32 4.3 The relationships between tea plantations and landslides 33 4.4 Potentials and limitations 34 Chapter 5 Conclusions 37 Chapter 6 References 39 Chapter 7 Appendix 45 | - |
| dc.language.iso | en | - |
| dc.subject | 山地農業 | zh_TW |
| dc.subject | 耦合人類環境系統 | zh_TW |
| dc.subject | 光學遙測衛星影像 | zh_TW |
| dc.subject | 時間序列 | zh_TW |
| dc.subject | coupled human-environment system | en |
| dc.subject | optical remote sensing | en |
| dc.subject | Agroecosystem | en |
| dc.subject | time series | en |
| dc.title | 以衛星影像與光譜混合分析方法監測大阿里山茶區之崩塌地 | zh_TW |
| dc.title | Landslide Detection Using Spectral Mixture Analysis and Satellite Imagery in the Great Ali-Mountain Tea Plantation Region in Southern Taiwan | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 莊昀叡;王雪卿 | zh_TW |
| dc.contributor.oralexamcommittee | RAY Y. CHUANG;Hsueh-Ching Wang | en |
| dc.subject.keyword | 山地農業,耦合人類環境系統,光學遙測衛星影像,時間序列, | zh_TW |
| dc.subject.keyword | Agroecosystem,coupled human-environment system,optical remote sensing,time series, | en |
| dc.relation.page | 46 | - |
| dc.identifier.doi | 10.6342/NTU202504349 | - |
| dc.rights.note | 同意授權(全球公開) | - |
| dc.date.accepted | 2025-08-15 | - |
| dc.contributor.author-college | 理學院 | - |
| dc.contributor.author-dept | 地理環境資源學系 | - |
| dc.date.embargo-lift | 2025-08-21 | - |
| 顯示於系所單位: | 地理環境資源學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-2.pdf | 5.24 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
