Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 電子工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98922
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor盧信嘉zh_TW
dc.contributor.advisorHsin-Chia Luen
dc.contributor.author徐博泰zh_TW
dc.contributor.authorBo-Tai Hsuen
dc.date.accessioned2025-08-20T16:17:48Z-
dc.date.available2025-08-21-
dc.date.copyright2025-08-20-
dc.date.issued2025-
dc.date.submitted2025-08-13-
dc.identifier.citation[1] "5G維基百科". [Online]. Accessed at Jan. 2025, Available: https://zh.wikipedia.org/zh-tw/5G.
[2] 李建鵬, 高仲良, "運用5G行動網路以強化國軍通信骨幹系統效能之研究", 《國防管理學報》, 第44卷第1期, pp. 31-55. Available: https://doi.org/10.29496/JNDM.202305_44(1).0002.
[3] 黃宜稜, "6G通訊協定未有共識,六大使用場景開啟前哨站". [Online]. Accessed at Feb. 2025, Available: https://www.charmingscitech.nat.gov.tw/post/6g-protocol.
[4] "5G NR頻段維基百科". [Online]. Accessed at Feb. 2025, Available: https://zh.wikipedia.org/wiki/5G_NR%E9%A2%91%E6%AE%B5.
[5] Taro Eichler and Robert Ziegler, "行動通訊頻率逐代上升 太赫茲特性/應用深度解密". [Online]. Accessed at Jan. 2025, Availale: https://www.2cm.com.tw/2cm/zh-tw/tech/B7F89B7877B34481B4A8F04031A4AF89.
[6] "【相控陣教程】第九講-毫米波在大氣中的傳播特性". [Online]. Accessed at Jan. 2025, Available: https://www.eet-china.com/mp/a152503.html.
[7] "5G毫米波通訊技術". [Online]. Accessed at Jan. 2025, Available: https://www.unictron.com/wireless-communications/tpost/5g-millimeter-wave-communications-technology/?lang=zh-hant.
[8] 紀鈞翔, "滿足5G高頻發展需求 主動式相位陣列天線露頭角". [Online]. Accessed at Jan. 2025, Available: http://www.2cm.com.tw/2cm/zh-tw/magazine/-Technology/7143108A029846C1A08EE1C28528048D.
[9] C. Zhou, H. Qian and Z. Yu, "A lumped elements varactor-loaded transmission-line phase shifter at 60GHz," 2010 10th IEEE International Conference on Solid-State and Integrated Circuit Technology, Nov. 2010, pp. 656-658.
[10] S. Y. Zheng, W. S. Chan and K. F. Man, "Broadband phase shifter using loaded transmission line," IEEE Microwave and Wireless Components Letters, vol. 20, no. 9, pp. 498-500, Sept. 2010.
[11] F. Ellinger, H. Jackel and W. Bachtold, "Varactor-loaded transmission-line phase shifter at C-band using lumped elements," IEEE Transactions on Microwave Theory and Techniques, vol. 51, no. 4, pp. 1135-1140, April 2003.
[12] P. Gu and D. Zhao, "Ka-Band CMOS 360° reflective-type phase shifter with ±0.2 dB insertion loss variation using triple-resonating load and dual-voltage control techniques," in Proc. IEEE Radio Frequency Integrated Circuits Symposium (RFIC), June 2018, pp. 140-143.
[13] H. Zarei, C. T. Charles and D. J. Allstot, "Reflective-type phase shifters for multiple-antenna transceivers," IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 54, no. 8, pp. 1647-1656, Aug. 2007.
[14] W. T. Li, Y. C. Chiang, J. H. Tsai, H. Y. Yang, J. H. Cheng and T. W. Huang, "60-GHz 5-bit phase shifter with integrated VGA phase-error compensation," IEEE Transactions on Microwave Theory and Techniques, vol. 61, no. 3, pp. 1224-1235, Mar. 2013.
[15] H. Zhang, J. Luo, P. Chen, W. Zhang, W. Li and J. Liu, "A Ka-band 6-bit switched-type CMOS phase shifter with low RMS amplitude error," 2023 International Conference on Microwave and Millimeter Wave Technology (ICMMT), Qingdao, China, Oct. 2023, pp. 1-3.
[16] B. Cetindogan, E. Ozeren, B. Ustundag, M. Kaynak and Y. Gurbuz, "A 6 bit vector-sum phase shifter with a decoder based control circuit for X-band phased-arrays," IEEE Microwave and Wireless Components Letters, vol. 26, no. 1, pp. 64-66, Jan. 2016.
[17] F. Akbar and A. Mortazawi, "A frequency tunable 360° analog CMOS phase shifter with an adjustable amplitude," IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 64, no. 12, pp. 1427-1431, Dec. 2017.
[18] Tianjun Wu, Xiaoning Zhang, Zhao Xing, Chenxi Zhao, Yiming Yu and Huihua Liu, "A 21.5 ~ 25 GHz 7-bit phase shifter with passive vector-sum topology," Microwave and Optical Technology Letters, vol. 63, pp. 1652-1656, June 2021.
[19] K. -J. Koh and G. M. Rebeiz, "0.13-μm CMOS phase shifters for X-, Ku-, and K-band phased arrays," IEEE Journal of Solid-State Circuits, vol. 42, no. 11, pp. 2535-2546, Nov. 2007.
[20] Z. Duan, Y. Wang, W. Lv, Y. Dai and F. Lin, "A 6-bit CMOS active phase shifter for Ku-Band phased arrays," IEEE Microwave and Wireless Components Letters, vol. 28, no. 7, pp. 615-617, July 2018.
[21] M. H. Sahlabadi, H. Yu, J. Xia and S. Boumaiza, "A compact, high tuning accuracy and enhanced linearity 37-43 GHz digitally-controlled vector sum phase shifter," in Proc. IEEE 24th Topical Meeting on Silicon Monolithic Integrated Circuits in RF Systems (SiRF), Jan. 2024, pp. 17-20.
[22] C. W. Wang, H. S. Wu, and C. K. C. Tzuang, "CMOS passive phase shifter with group-delay deviation of 6.3 ps at K-band," IEEE Transactions on Microwave Theory and Techniques, vol. 59, no. 7, pp. 1778-1786, July 2011.
[23] Y. -T. Chang, Z. -W. Ou, H. Alsuraisry, A. Sayed and H. -C. Lu, "A 28-GHz low-power vector-sum phase shifter using biphase modulator and current reused technique," IEEE Microwave and Wireless Components Letters, vol. 28, no. 11, pp. 1014-1016, Nov. 2018.
[24] Y. -T. Chang, W. -Y. Wang and H. -C. Lu, "A 19 GHz vector-sum phase shifter using active current-mode coupler and bi-phase modulator for satellite communication," 2020 IEEE Asia-Pacific Microwave Conference (APMC), Hong Kong, Dec. 2020, pp. 988-990.
[25] T. -L. Yang, "Ka-band vector-sum dual-output phase shifter and Ka-band linear polarization rotator using variable gain power splitter," Graduate Institute of Electronics Engineering Master Thesis, National Taiwan University, Jan. 2024.
[26] B. Razavi and R. Behzad, RF Microelectronics. Prentice hall New York, 2012.
[27] D. -S. Siao, J. -C. Kao and H. Wang, "A 60 GHz low phase variation variable gain amplifier in 65 nm CMOS," IEEE Microwave and Wireless Components Letters, vol. 24, no. 7, pp. 457-459, July 2014.
[28] Y. Yu, K. Kang, C. Zhao, Q. Zheng, H. Liu, S. He, Y. Ban, L. Sun and W. Hong, "A 60-GHz 19.8-mW current-reuse active phase shifter with tunable current-splitting technique in 90-nm CMOS," IEEE Transactions on Microwave Theory and Techniques, vol. 64, no. 5, pp. 1572–1584, May 2016.
[29] F. Qiu, H. Zhu, W. Che and Q. Xue, "A simplified vector-sum phase shifter topology with low noise figure and high voltage gain," IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 30, no. 7, pp. 966-974, July 2022.
[30] D. M. Pozar, Microwave Engineering. John Wiley & Sons, Inc., Hoboken, 2012.
[31] National Instruments, "NI USB-6008/6009 user guide". [Online]. Accessed at May 2025, Available: https://c7076-control.chem.sfu.ca/interlock_monitorimo_system_resources/usb6008.pdf.
[32] N. Wei, N. Li, M. Li, H. Gao, S. Wang, C. Song, X. Yu and Z. Xu, "A calibration scheme for 24–28-GHz variable-gain phase shifter in 65-nm CMOS," IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 69, no. 4, pp. 1996-2000, April 2022.
[33] J. Lee, J. Lee, S. Jang and C. Park, "A Ka-band CMOS active phase shifter using active balun for phase optimization," 2023 18th European Microwave Integrated Circuits Conference (EuMIC), Berlin, Germany, 2023, pp. 253-256, Oct. 2023.
[34] H. Wang, Z. Hu, H. Cao, T. Huang and W. Wu, "A 24.25-29.50 GHz 6-bit active vector-summing phase shifter with low gain variation for 5G communication," 2024 IEEE MTT-S International Wireless Symposium (IWS), pp. 1-3, May 2024.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98922-
dc.description.abstract本論文展示了一個應用於5G通訊系統之Ka頻段6位元雙輸出向量合成相移器(dual-output vector-sum phase shifter),並採用台積電CMOS 180 nm製程實現。相較於傳統僅具單一輸出的相移器,所提出的雙輸出架構可同時輸出兩路訊號,不僅能讓相移器數量減半,功耗更是只要四分之一。雙輸出向量合成相移器的使用方式有兩種,一種是僅使用一個輸出的單輸出模式,與傳統相移器有相同的功能,另一種是同時使用到兩個輸出的雙輸出模式,兩種模式均具備6位元解析度。
電路架構包含主動可變功率分配器、雙相調變器及正交耦合器。主動可變功率分配器將輸入訊號分配為兩個不同振幅的訊號,雙相調變器可以反轉這兩個訊號的相位,最後使用正交耦合器合成兩個訊號,並同時輸出兩個訊號。
在中心頻率27.5 GHz下,單輸出模式的量測結果:S21振幅平均為0.97 dB,RMS振幅及相位誤差分別為0.21 dB及0.75°,S31振幅平均為1.28 dB,RMS振幅及相位誤差分別為0.12 dB及0.82°。在雙輸出模式下,S21及S31各自的振幅平均分別為1.9 dB及1.7 dB,雙輸出RMS振幅比誤差為0.91 dB,雙輸出RMS相位差誤差為0.3°。包含Pad的晶片佈局面積為0.89 mm2,而不含Pad的核心佈局面積則為0.54 mm2,整體直流功耗為9.6 mW。
zh_TW
dc.description.abstractThis thesis presents a Ka-band 6-bit dual-output vector-sum phase shifter for 5G communication systems. The phase shifter is implemented in TSMC’s 0.18-µm CMOS technology. Compared to conventional single-output phase shifters, the proposed dual-output architecture simultaneously delivers two output signals, effectively reducing the number of required phase shifters by half and DC power consumption to one-fourth. The proposed dual-output phase shifter supports two modes of operation: a single-output mode, which functions equivalently to a traditional phase shifter, and a dual-output mode, which utilizes both outputs. Both modes have a resolution of 6 bits.
The circuit architecture consists of an active variable power splitter, bi-phase modulator, and quadrature coupler. The active variable power splitter splits input signal into two signals with different amplitude, and the bi-phase modulator can inverse the phase of two signals, which will be synthesized by the quadrature coupler to produce two outputs at the same time.
Measurement results at the center frequency of 27.5 GHz are as follows: in single-output mode, the average S21 gain is 0.97 dB, and S21 RMS gain and phase error are 0.21 dB and 0.75°, respectively. The average S31 gain is 1.28 dB, and S31 RMS gain and phase error are 0.12 dB and 0.82°, respectively. In dual-output mode, the average S21 and S31 gains are 1.9 dB and 1.7 dB, respectively. The dual-output RMS amplitude ratio error is 0.91 dB, and the dual-output RMS phase difference error is 0.3°. The chip size including the pads is 0.89 mm2 and the core size excluding the pads is 0.54 mm2. The measured DC power consumption is 9.6 mW.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-08-20T16:17:48Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-08-20T16:17:48Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents誌謝 i
中文摘要 ii
ABSTRACT iii
目次 iv
圖次 vii
表次 xii
Chapter 1 緒論 1
1.1 研究動機與背景 1
1.2 相移器介紹與文獻回顧 5
1.2.1 傳輸線式相移器 5
1.2.2 反射式相移器 7
1.2.3 開關式相移器 9
1.2.4 單輸出及雙輸出向量合成相移器 11
1.3 論文貢獻 14
1.4 各章節重點介紹 15
Chapter 2 可變增益放大器與相移器電路介紹 16
2.1 簡介 16
2.2 可變增益放大器電路介紹 16
2.2.1 電壓控制可變增益放大器 16
2.2.2 電流控制可變增益放大器 17
2.2.3 低相位變化可變增益放大器 20
2.2.4 主動可變功率分配器 21
2.3 相移器之重要參數介紹 22
2.3.1 相位差 22
2.3.2 反射損耗、插入損耗 23
2.3.3 RMS相位誤差、RMS振幅誤差 23
2.3.4 雙輸出振幅比 24
2.3.5 雙輸出RMS振幅比誤差 24
2.3.6 雙輸出相位差 24
2.3.7 雙輸出RMS相位差誤差 25
2.4 向量合成相移器電路介紹 25
2.4.1 可變增益向量加法器 26
2.4.2 正交耦合器向量合成 28
2.5 雙輸出向量合成相移器電路介紹 28
Chapter 3 Ka頻段雙輸出向量合成相移器電路設計 32
3.1 簡介 32
3.2 規格制定 32
3.3 電路架構 33
3.4 子電路設計 35
3.4.1 主動可變功率分配器設計 35
3.4.2 雙相調變器設計 68
3.4.3 正交耦合器設計 78
3.5 電路模擬結果 81
3.5.1 主動電路模擬結果 81
3.5.2 被動電路模擬結果 87
3.5.3 相移器整體模擬結果 92
3.5.4 相移器穩定度模擬結果 112
3.5.5 相移器P1dB模擬結果 114
3.6 電路佈局 115
Chapter 4 電路量測 116
4.1 量測準備 116
4.1.1 印刷電路板 116
4.1.2 偏壓及控制電壓產生方式 117
4.1.3 量測環境 120
4.2 量測結果 122
4.3 問題與討論 142
4.4 向量合成相移器性能比較 150
Chapter 5 結論與未來展望 154
5.1 結論 154
5.2 未來與展望 155
參考文獻 159
-
dc.language.isozh_TW-
dc.subject可變功率分配器zh_TW
dc.subject向量合成相移器zh_TW
dc.subject5G通訊系統zh_TW
dc.subject雙相調變器zh_TW
dc.subject雙輸出相移器zh_TW
dc.subjectKa頻段zh_TW
dc.subjectKa-banden
dc.subject5G communication systemsen
dc.subjectbi-phase modulatoren
dc.subjectvariable power splitteren
dc.subjectvector-sum phase shifteren
dc.subjectdual-output phase shifteren
dc.title使用主動可變功率分配器實現Ka頻段雙輸出向量合成相移器zh_TW
dc.titleKa-band Dual-Output Vector-Sum Phase Shifter Using Active Variable Power Splitteren
dc.typeThesis-
dc.date.schoolyear113-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee林坤佑;蔡政翰;張譽騰zh_TW
dc.contributor.oralexamcommitteeKun-You Lin;Jeng-Han Tsai;Yu-Teng Changen
dc.subject.keyword5G通訊系統,Ka頻段,雙輸出相移器,向量合成相移器,可變功率分配器,雙相調變器,zh_TW
dc.subject.keyword5G communication systems,Ka-band,dual-output phase shifter,vector-sum phase shifter,variable power splitter,bi-phase modulator,en
dc.relation.page162-
dc.identifier.doi10.6342/NTU202503780-
dc.rights.note同意授權(限校園內公開)-
dc.date.accepted2025-08-15-
dc.contributor.author-college電機資訊學院-
dc.contributor.author-dept電子工程學研究所-
dc.date.embargo-lift2027-08-07-
顯示於系所單位:電子工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-113-2.pdf
  未授權公開取用
14.61 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved