Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 重點科技研究學院
  3. 元件材料與異質整合學位學程
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98920
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor吳志毅zh_TW
dc.contributor.advisorChih-I Wuen
dc.contributor.author王博正zh_TW
dc.contributor.authorBo-Zheng Wangen
dc.date.accessioned2025-08-20T16:17:22Z-
dc.date.available2025-08-21-
dc.date.copyright2025-08-20-
dc.date.issued2025-
dc.date.submitted2025-08-14-
dc.identifier.citation1. Khanna, V.K. and V.K. Khanna, Short-channel effects in MOSFETs. Integrated nanoelectronics: nanoscale CMOS, post-CMOS and allied nanotechnologies, 2016: p. 73-93.
2. Wei, T., et al., Two dimensional semiconducting materials for ultimately scaled transistors. IScience, 2022. 25(10).
3. Ferain, I., C.A. Colinge, and J.-P. Colinge, Multigate transistors as the future of classical metal–oxide–semiconductor field-effect transistors. Nature, 2011. 479(7373): p. 310-316.
4. Bohr, M.T. and I.A. Young, CMOS scaling trends and beyond. Ieee Micro, 2017. 37(6): p. 20-29.
5. Razavieh, A., P. Zeitzoff, and E.J. Nowak, Challenges and limitations of CMOS scaling for FinFET and beyond architectures. IEEE Transactions on Nanotechnology, 2019. 18: p. 999-1004.
6. Novoselov, K.S., et al., Electric field effect in atomically thin carbon films. science, 2004. 306(5696): p. 666-669.
7. Gupta, A., T. Sakthivel, and S. Seal, Recent development in 2D materials beyond graphene. Progress in Materials Science, 2015. 73: p. 44-126.
8. Schwierz, F., J. Pezoldt, and R. Granzner, Two-dimensional materials and their prospects in transistor electronics. Nanoscale, 2015. 7(18): p. 8261-8283.
9. Chhowalla, M., D. Jena, and H. Zhang, Two-dimensional semiconductors for transistors. Nature Reviews Materials, 2016. 1(11): p. 1-15.
10. Zhang, Y., et al., 2D black phosphorus for energy storage and thermoelectric applications. Small, 2017. 13(28): p. 1700661.
11. Zhang, K., et al., Two dimensional hexagonal boron nitride (2D-hBN): synthesis, properties and applications. Journal of Materials Chemistry C, 2017. 5(46): p. 11992-12022.
12. Liu, Y., et al., Two-dimensional transistors beyond graphene and TMDCs. Chemical Society Reviews, 2018. 47(16): p. 6388-6409.
13. Chhowalla, M., et al., The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. Nature chemistry, 2013. 5(4): p. 263-275.
14. Toh, R.J., et al., 3R phase of MoS 2 and WS 2 outperforms the corresponding 2H phase for hydrogen evolution. Chemical Communications, 2017. 53(21): p. 3054-3057.
15. Kumar, A. and P. Ahluwalia, Electronic structure of transition metal dichalcogenides monolayers 1H-MX 2 (M= Mo, W; X= S, Se, Te) from ab-initio theory: new direct band gap semiconductors. The European Physical Journal B, 2012. 85: p. 1-7.
16. Wang, Q.H., et al., Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nature nanotechnology, 2012. 7(11): p. 699-712.
17. Splendiani, A., et al., Emerging photoluminescence in monolayer MoS2. Nano letters, 2010. 10(4): p. 1271-1275.
18. Das, S., et al., Beyond graphene: progress in novel two-dimensional materials and van der Waals solids. Annual Review of Materials Research, 2015. 45(1): p. 1-27.
19. Shanmugam, V., et al., A review of the synthesis, properties, and applications of 2D materials. Particle & Particle Systems Characterization, 2022. 39(6): p. 2200031.
20. Hoang, A.T., et al., Large-area synthesis of transition metal dichalcogenides via CVD and solution-based approaches and their device applications. Nanoscale, 2021. 13(2): p. 615-633.
21. Zhang, J., et al., Janus monolayer transition-metal dichalcogenides. ACS nano, 2017. 11(8): p. 8192-8198.
22. Lu, A.-Y., et al., Janus monolayers of transition metal dichalcogenides. Nature nanotechnology, 2017. 12(8): p. 744-749.
23. Zheng, T., et al., Excitonic dynamics in Janus MoSSe and WSSe monolayers. Nano letters, 2021. 21(2): p. 931-937.
24. Li, R., Y. Cheng, and W. Huang, Recent progress of Janus 2D transition metal chalcogenides: from theory to experiments. Small, 2018. 14(45): p. 1802091.
25. Li, F., et al., Intrinsic electric field-induced properties in Janus MoSSe van der Waals structures. The journal of physical chemistry letters, 2019. 10(3): p. 559-565.
26. Yao, Q.-F., et al., Manipulation of the large Rashba spin splitting in polar two-dimensional transition-metal dichalcogenides. Physical review B, 2017. 95(16): p. 165401.
27. Gong, Y., et al., Band gap engineering and layer-by-layer mapping of selenium-doped molybdenum disulfide. Nano letters, 2014. 14(2): p. 442-449.
28. Dong, L., J. Lou, and V.B. Shenoy, Large in-plane and vertical piezoelectricity in Janus transition metal dichalchogenides. ACS nano, 2017. 11(8): p. 8242-8248.
29. Li, F., et al., Electronic and optical properties of pristine and vertical and lateral heterostructures of Janus MoSSe and WSSe. The journal of physical chemistry letters, 2017. 8(23): p. 5959-5965.
30. Ju, L., et al., Janus transition metal dichalcogenides: A superior platform for photocatalytic water splitting. Journal of Physics: Materials, 2020. 3(2): p. 022004.
31. Suzuki, H., et al., Intermediate State between MoSe2 and Janus MoSeS during Atomic Substitution Process. Nano Letters, 2023. 23(10): p. 4533-4540.
32. Chiu, Y.-P., H.-W. Huang, and Y.-R. Wu, Utilizing the Janus MoSSe surface polarization in designing complementary metal-oxide-semiconductor field-effect transistors. Physical Review Applied, 2024. 21(4): p. 044046.
33. Zhang, L., et al., Janus two-dimensional transition metal dichalcogenides. Journal of Applied Physics, 2022. 131(23).
34. Lin, Y.-C., et al., Low energy implantation into transition-metal dichalcogenide monolayers to form Janus structures. ACS nano, 2020. 14(4): p. 3896-3906.
35. Jang, C.W., et al., Growth of two-dimensional Janus MoSSe by a single in situ process without initial or follow-up treatments. NPG Asia Materials, 2022. 14(1): p. 15.
36. Picker, J., et al., Atomic Structure and Electronic Properties of Janus SeMoS Monolayers on Au (111). Nano Letters, 2025. 25(8): p. 3330-3336.
37. Trivedi, D.B., et al., Room‐temperature synthesis of 2D Janus crystals and their heterostructures. Advanced materials, 2020. 32(50): p. 2006320.
38. Guo, Y., et al., Designing artificial two-dimensional landscapes via atomic-layer substitution. Proceedings of the National Academy of Sciences, 2021. 118(32): p. e2106124118.
39. Sino, P.A.L., et al., Controllable structure-engineered janus and alloy polymorphic monolayer transition metal dichalcogenides by plasma-assisted selenization process toward high-yield and wafer-scale production. Materials Today, 2023. 69: p. 97-106.
40. Trolier-McKinstry, S., Crystal chemistry of piezoelectric materials, in Piezoelectric and Acoustic Materials for Transducer Applications. 2008, Springer. p. 39-56.
41. Dai, M., et al., Two-dimensional van der Waals materials with aligned in-plane polarization and large piezoelectric effect for self-powered piezoelectric sensors. Nano letters, 2019. 19(8): p. 5410-5416.
42. Sherrell, P.C., et al., A bright future for engineering piezoelectric 2D crystals. Chemical Society Reviews, 2022. 51(2): p. 650-671.
43. Blonsky, M.N., et al., Ab initio prediction of piezoelectricity in two-dimensional materials. ACS nano, 2015. 9(10): p. 9885-9891.
44. Wu, W., et al., Piezoelectricity of single-atomic-layer MoS2 for energy conversion and piezotronics. Nature, 2014. 514(7523): p. 470-474.
45. Singh, V., et al., Investigating the role of chalcogen atom in the piezoelectric performance of PVDF/TMDCs based flexible nanogenerator. Energy, 2022. 239: p. 122125.
46. Strasser, A., H. Wang, and X. Qian, Nonlinear optical and photocurrent responses in janus MoSSe monolayer and MoS2–MoSSe van der waals heterostructure. Nano Letters, 2022. 22(10): p. 4145-4152.
47. Moura, C.C., et al., Raman spectroscopy and coherent anti-Stokes Raman scattering imaging: prospective tools for monitoring skeletal cells and skeletal regeneration. Journal of The Royal Society Interface, 2016. 13(118): p. 20160182.
48. Wan, X., et al., Synthesis and characterization of metallic Janus MoSH monolayer. ACS nano, 2021. 15(12): p. 20319-20331.
49. Zhang, L., et al., Thermal expansion coefficient of monolayer molybdenum disulfide using micro-Raman spectroscopy. Nano letters, 2019. 19(7): p. 4745-4751.
50. Evertsson, J., et al., The thickness of native oxides on aluminum alloys and single crystals. Applied Surface Science, 2015. 349: p. 826-832.
51. Guo, R., et al., Enhanced electron–phonon scattering in Janus MoSSe. New Journal of Physics, 2019. 21(11): p. 113040.
52. Liu, H., et al., Strain engineering the structures and electronic properties of Janus monolayer transition-metal dichalcogenides. Journal of Applied Physics, 2019. 125(8).
53. Chee, S.S., et al., Lowering the Schottky barrier height by graphene/Ag electrodes for high‐mobility MoS2 field‐effect transistors. Advanced Materials, 2019. 31(2): p. 1804422.
54. Zhou, P., et al., Controlling the work function of molybdenum disulfide by in situ metal deposition. Nanotechnology, 2016. 27(34): p. 344002.
55. Ko, K.Y., et al., Improvement of gas-sensing performance of large-area tungsten disulfide nanosheets by surface functionalization. ACS nano, 2016. 10(10): p. 9287-9296.
56. Eo, J.S., et al., Tailoring the interfacial band offset by the molecular dipole orientation for a molecular heterojunction selector. Advanced Science, 2021. 8(21): p. 2101390.
57. Endres, J., et al., Valence and conduction band densities of states of metal halide perovskites: a combined experimental–theoretical study. The journal of physical chemistry letters, 2016. 7(14): p. 2722-2729.
58. Brennan, C.J., et al., Out-of-plane electromechanical response of monolayer molybdenum disulfide measured by piezoresponse force microscopy. Nano letters, 2017. 17(9): p. 5464-5471.
59. Sharma, C., A.K. Srivastava, and M.K. Gupta, Unusual nanoscale piezoelectricity-driven high current generation from a self s-defect-neutralised few-layered mos 2 nanosheet-based flexible nanogenerator. Nanoscale, 2022. 14(35): p. 12885-12897.
60. Lee, J.H., et al., Reliable piezoelectricity in bilayer WSe2 for piezoelectric nanogenerators. Advanced Materials, 2017. 29(29): p. 1606667.
61. Xue, F., et al., Multidirection piezoelectricity in mono-and multilayered hexagonal α-In2Se3. ACS nano, 2018. 12(5): p. 4976-4983.
62. Yang, P.-K., et al., Tin disulfide piezoelectric nanogenerators for biomechanical energy harvesting and intelligent human-robot interface applications. Nano Energy, 2020. 75: p. 104879.
63. Zhou, Y.-X., et al., Tungsten disulfide nanosheets for piezoelectric nanogenerator and human-machine interface applications. Nano Energy, 2022. 97: p. 107172.
64. Nayak, C., et al., Valley polarization and photocurrent generation in transition metal dichalcogenide alloy MoS 2 x Se 2 (1− x). Physical Review B, 2024. 109(11): p. 115304.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98920-
dc.description.abstract本研究旨在開發並優化一種新穎的Janus硫硒化鉬(Janus MoSSe)合成製程,並驗證其卓越的壓電性能,以應對次世代可撓式電子元件的需求。傳統二維材料如二硫化鉬(MoS2)因其結構對稱,壓電效應僅限於面內方向,從而限制了其應用潛力 。本研究的核心目標是透過將MoS2轉化為具有垂直不對稱結構(S-Mo-Se)的Janus MoSSe,以實現理論上預測的、優異的面外壓電特性。研究中採用感應式耦合電漿(ICP)輔助技術,在溫和的室溫條件下,選擇性地將MoS2頂層的硫原子置換為硒原子。初期發現直接在藍寶石基板上進行電漿製程,易因反應放熱和化學體積膨脹導致薄膜破損。為解決此關鍵問題,本研究創新地引入「AlOx/Al緩衝層」於基板上,成功克服了應力問題,實現了高品質、結構完整之Janus MoSSe薄片的穩定合成。透過一系列精密分析,成功合成的材料被證實為高品質的單晶六方晶格結構,其化學成分比例接近理想的Mo:S:Se = 1:1:1,且為能隙約1.72 eV的n型半導體。在壓電性能驗證上,壓電力顯微鏡(PFM)量測結果顯示,Janus MoSSe的有效面外壓電係數(d_33^eff)高達46.79 pm/V,是其母材MoS2(~13.24 pm/V)的3.5倍以上,且顯著優於多數已報導的二維材料。此外,本研究成功將Janus MoSSe整合於軟性基板上,製作出可撓式壓電奈米發電機(PENG)。在0.39%的應變下,元件可產生高達175 mV的開路電壓與1.4 nA的短路電流,其性能遠超過以相同製程製作的MoS2元件及相關文獻報導。本論文的研究成果不僅建立了一套穩定的合成方案,更從實驗上證明了Janus結構在壓電應用中的巨大潛力,為未來開發新一代高性能可撓式壓電元件奠定了堅實的基礎。zh_TW
dc.description.abstractThis study aims to develop and optimize a novel synthesis process for Janus molybdenum sulfoselenide (Janus MoSSe) and to verify its superior piezoelectric properties for next-generation flexible electronic devices. Conventional 2D materials, such as molybdenum disulfide (MoS2), are limited by their symmetric structure, which confines their piezoelectric effects to the in-plane direction. This research addresses this limitation by transforming MoS2 into Janus MoSSe, which possesses a vertically asymmetric structure (S-Mo-Se) predicted to exhibit a strong out-of-plane piezoelectric response.
An inductively coupled plasma (ICP) assisted method was employed to selectively replace the top-layer sulfur atoms of MoS2 with selenium atoms under mild, room-temperature conditions. A critical challenge identified early in the study was film cracking and damage on sapphire substrates, attributed to thermal stress from the exothermic reaction and chemical volume expansion. This was overcome by introducing an innovative AlOx/Al buffer layer, which successfully mitigated the stress and enabled the synthesis of high-quality, structurally intact Janus MoSSe films. A comprehensive suite of characterization techniques, including PL, Raman, HRTEM, XPS, and UPS, confirmed the successful synthesis of high-quality, single-crystal Janus MoSSe with a Mo:S:Se atomic ratio near 1:1:1, a bandgap of approximately 1.72 eV, and intrinsic n-type semiconductor characteristics.
The piezoelectric properties were validated at both the nanoscale and device level. Piezoelectric force microscopy (PFM) revealed that Janus MoSSe has an effective out-of-plane piezoelectric coefficient (d_33^eff) of 46.79 pm/V, which is over 3.5 times greater than that of its parent MoS2 (~13.24 pm/V) and superior to most 2D materials reported in the literature. Furthermore, a flexible piezoelectric nanogenerator (PENG) fabricated using Janus MoSSe generated a high open-circuit voltage of ~175 mV and a short-circuit current of ~1.4 nA under 0.39% strain. This performance significantly surpasses that of a control device made from MoS2 and previously reported values. This work establishes a robust synthesis route for high-quality Janus materials and provides definitive experimental evidence of their enhanced piezoelectric performance, highlighting their immense potential for future applications in flexible sensors, energy harvesters, and piezotronics.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-08-20T16:17:22Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-08-20T16:17:22Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents誌謝 i
摘要 iii
Abstract iv
目次 vi
圖次 ix
表次 xiii
第一章 緒論 1
1.1 二維材料簡介 1
1.1.1 摩爾定律與先進半導體技術的演進 1
1.1.2 二維材料優勢及潛力 3
1.2 過渡金屬二硫族化物簡介 7
1.2.1 過渡金屬二硫族化物之結構與特性 7
1.2.2 過渡金屬二硫族化物之製備技術 10
1.3 Janus硫硒化鉬簡介 12
1.3.1 Janus硫硒化鉬之結構與特性 12
1.3.2 Janus硫硒化鉬之製備技術 14
1.4 Janus硫硒化鉬之壓電性質 18
1.4.1 壓電效應 18
1.4.2 Janus過渡金屬二硫族化物之壓電性 20
1.5 研究動機 22
第二章 實驗理論與方法 25
2.1 製程設備簡介 25
2.1.1 低壓化學氣相沉積系統 25
2.1.2 感應式耦合電漿系統 26
2.1.3 快速熱退火爐 27
2.1.4 步進式曝光機 28
2.1.5 物理氣相沉積系統 29
2.2 量測儀器簡介 30
2.2.1 光致發光與拉曼光譜分析儀 30
2.2.2 掃描探針顯微鏡系統 32
2.2.3 穿隧式電子顯微鏡 33
2.2.4 光電子能譜儀 34
2.2.5 壓電應力量測系統 36
2.3 實驗原理及機制 37
2.3.1 電漿反應機制 37
2.3.2 壓電輸出機制 40
第三章 Janus硫硒化鉬合成製程及材料分析 42
3.1 Janus硫硒化鉬合成製程 42
3.1.1 合成方法與設備 42
3.1.2 基板選擇 43
3.2 電漿製程參數調整與優化 49
3.2.1 腔體壓力與氣體流量的優化 49
3.2.2 射頻電源功率對電漿特性與原子置換反應的影響 51
3.2.3 樣品在電漿中位置的選擇及其對反應區域的影響 54
3.2.4 電漿處理時間對原子置換程度的影響 56
3.2.5 最佳化製程參數總結 59
3.3 Janus硫硒化鉬材料分析 59
3.3.1 光致發光與拉曼光譜分析 59
3.3.2 原子力顯微鏡分析 62
3.3.3 晶體結構與電子繞射分析 64
3.3.4 元素成分分析 66
3.3.5 能帶結構分析 71
第四章 Janus硫硒化鉬壓電性分析 75
4.1 壓電力顯微鏡分析 75
4.2 Janus硫硒化鉬可撓式壓電元件 80
4.2.1 可撓式壓電元件製作 80
4.2.2 可撓式壓電元件之量測與分析 82
第五章 總結與未來展望 88
參考文獻 90
-
dc.language.isozh_TW-
dc.subjectJanuszh_TW
dc.subject奈米發電機zh_TW
dc.subject可撓式元件zh_TW
dc.subject感應耦合電漿zh_TW
dc.subject面外壓電性zh_TW
dc.subject壓電效應zh_TW
dc.subjectPiezoelectric Nanogenerator (PENG)en
dc.subjectFlexible Deviceen
dc.subjectInductively Coupled Plasma (ICP)en
dc.subjectOut-of-Plane Piezoelectricityen
dc.subjectPiezoelectric Effecten
dc.subjectJanusen
dc.title利用感應式耦合電漿輔助合成Janus層狀材料及其壓電特性之研究zh_TW
dc.titleDevelopment of Janus Layered Materials via Inductively Coupled Plasma-Assisted Synthesis and Investigation of Their Piezoelectric Propertiesen
dc.typeThesis-
dc.date.schoolyear113-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee陳奕君;張子璿;周昂昇;楊伯康zh_TW
dc.contributor.oralexamcommitteeI-Chun Cheng;Tzu-Hsuan Chang;Ang-Sheng Chou;Po-kang yangen
dc.subject.keywordJanus,壓電效應,面外壓電性,感應耦合電漿,可撓式元件,奈米發電機,zh_TW
dc.subject.keywordJanus,Piezoelectric Effect,Out-of-Plane Piezoelectricity,Inductively Coupled Plasma (ICP),Flexible Device,Piezoelectric Nanogenerator (PENG),en
dc.relation.page94-
dc.identifier.doi10.6342/NTU202504198-
dc.rights.note未授權-
dc.date.accepted2025-08-15-
dc.contributor.author-college重點科技研究學院-
dc.contributor.author-dept元件材料與異質整合學位學程-
dc.date.embargo-liftN/A-
顯示於系所單位:元件材料與異質整合學位學程

文件中的檔案:
檔案 大小格式 
ntu-113-2.pdf
  未授權公開取用
7.25 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved