Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 管理學院
  3. 國際企業學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98919
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor林俊昇zh_TW
dc.contributor.advisorJiun-Sheng Chris Linen
dc.contributor.author鄧悅彤zh_TW
dc.contributor.authorYuetong Dengen
dc.date.accessioned2025-08-20T16:17:09Z-
dc.date.available2025-09-19-
dc.date.copyright2025-08-20-
dc.date.issued2025-
dc.date.submitted2025-08-12-
dc.identifier.citationBagozzi, R. P., & Heatherton, T. F. (1994). A general approach to representing multifaceted personality constructs: Application to state self‐esteem. Structural Equation Modeling: A Multidisciplinary Journal, 1(1), 35–67. https://doi.org/10.1080/10705519409539961

Baker, D. A., & Crompton, J. L. (2000). Quality, satisfaction and behavioral intentions. Annals of Tourism Research, 27(3), 785–804. https://doi.org/10.1016/S0160-7383(99)00108-5

Barbeite, F. G., & Weiss, E. M. (2004). Computer self-efficacy and anxiety scales for an Internet sample: Testing measurement equivalence of existing measures and development of new scales. Computers in Human Behavior, 20(1), 1–15. https://doi.org/10.1016/S0747-5632(03)00049-9

Ben Mimoun, M. S., Poncin, I., & Garnier, M. (2017). Animated conversational agents and e-consumer productivity: The roles of agents and individual characteristics. Information & Management, 54(5), 545–559. https://doi.org/10.1016/j.im.2016.11.008

Blut, M., Wang, C., Wünderlich, N. V., & Brock, C. (2021). Understanding anthropomorphism in service provision: A meta-analysis of physical robots, chatbots, and other AI. Journal of the Academy of Marketing Science, 49(4), 632–658. https://doi.org/10.1007/s11747-020-00762-y

Byrne, B. M. (1994). Structural Equation Modeling with EQS and EQS/WINDOWS: Basic Concepts, Applications, and Programming. SAGE.
 
Cai, N., Gao, S., & Yan, J. (2024). How the communication style of chatbots influences consumers’ satisfaction, trust, and engagement in the context of service failure. Humanities and Social Sciences Communications, 11(1), 687. https://doi.org/10.1057/s41599-024-03212-0

Chen, Q., Gong, Y., Lu, Y., & Tang, J. (2022). Classifying and measuring the service quality of AI chatbot in frontline service. Journal of Business Research, 145, 552–568. https://doi.org/10.1016/j.jbusres.2022.02.088

Colman, A. M. (2015). A Dictionary of Psychology. Oxford University Press.

Compeau, D., Higgins, C. A., & Huff, S. (1999). Social Cognitive Theory and Individual Reactions to Computing Technology: A Longitudinal Study. MIS Quarterly, 23(2), 145–158. https://doi.org/10.2307/249749

Crolic, C., Thomaz, F., Hadi, R., & Stephen, A. T. (2022). Blame the Bot: Anthropomorphism and Anger in Customer–Chatbot Interactions. Journal of Marketing, 86(1), 132–148. https://doi.org/10.1177/00222429211045687

Cronbach, L. J., & Furby, L. (1970). How we should measure “change”: Or should we? Psychological Bulletin, 74(1), 68–80. https://doi.org/10.1037/h0029382

Dietvorst, B. J., Simmons, J. P., & Massey, C. (2015). Algorithm aversion: People erroneously avoid algorithms after seeing them err. Journal of Experimental Psychology: General, 144(1), 114–126. https://doi.org/10.1037/xge0000033

Eysenck, M. W., Derakshan, N., Santos, R., & Calvo, M. G. (2007). Anxiety and cognitive performance: Attentional control theory. Emotion, 7(2), 336–353. https://doi.org/10.1037/1528-3542.7.2.336

Fornell, C., & Larcker, D. F. (1981). Evaluating Structural Equation Models with Unobservable Variables and Measurement Error. Journal of Marketing Research, 18(1), 39–50. https://doi.org/10.1177/002224378101800104

Frankish, K., & Ramsey, W. M. (Eds.). (2014). The Cambridge Handbook of Artificial Intelligence. Cambridge University Press. https://doi.org/10.1017/CBO9781139046855

Gelbrich, K. (2010). Anger, frustration, and helplessness after service failure: Coping strategies and effective informational support. Journal of the Academy of Marketing Science, 38(5), 567–585. https://doi.org/10.1007/s11747-009-0169-6

Gkinko, L., & Elbanna, A. (2022). Hope, tolerance and empathy: Employees’ emotions when using an AI-enabled chatbot in a digitalised workplace. Information Technology & People, 35(6), 1714–1743. https://doi.org/10.1108/ITP-04-2021-0328

Go, E., & Sundar, S. S. (2019a). Humanizing chatbots: The effects of visual, identity and conversational cues on humanness perceptions. Computers in Human Behavior, 97, 304–316. https://doi.org/10.1016/j.chb.2019.01.020

Go, E., & Sundar, S. S. (2019b). Humanizing chatbots: The effects of visual, identity and conversational cues on humanness perceptions. Computers in Human Behavior, 97, 304–316. https://doi.org/10.1016/j.chb.2019.01.020

Gump, B. B., & Kulik, J. A. (1997). Stress, affiliation, and emotional contagion. Journal of Personality and Social Psychology, 72(2), 305–319. https://doi.org/10.1037/0022-3514.72.2.305

Han, B., Deng, X., & Fan, H. (2023). Partners or Opponents? How Mindset Shapes Consumers’ Attitude Toward Anthropomorphic Artificial Intelligence Service Robots. Journal of Service Research, 26(3), 441–458. https://doi.org/10.1177/10946705231169674

Han E., Yin D., & Zhang H. (2022). Chatbot Empathy in Customer Service: When It Works and When It Backfires. https://aisel.aisnet.org/sighci2022/1

Harrison, A. W., & Rainer Jr., R. K. (1992). The Influence of Individual Differences on Skill in End-User Computing. Journal of Management Information Systems, 9(1), 93–111. https://doi.org/10.1080/07421222.1992.11517949

Hess, R. L., Ganesan, S., & Klein, N. M. (2007). Interactional service failures in a pseudorelationship: The role of organizational attributions. Journal of Retailing, 83(1), 79–95. https://doi.org/10.1016/j.jretai.2006.10.010

Hu, L., & Bentler, P. M. (1999). Cutoff criteria for fit indexes in covariance structure analysis: Conventional criteria versus new alternatives. Structural Equation Modeling: A Multidisciplinary Journal, 6(1), 1–55. https://doi.org/10.1080/10705519909540118

Jeng, M.-Y., Pai, F.-Y., & Yeh, T.-M. (2022). Antecedents for Older Adults’ Intention to Use Smart Health Wearable Devices-Technology Anxiety as a Moderator. Behavioral Sciences, 12(4), Article 4. https://doi.org/10.3390/bs12040114

Kaya, F., Aydin, F., Schepman, A., Rodway, P., Yetişensoy, O., & Demir Kaya, M. (2024). 8.The Roles of Personality Traits, AI Anxiety, and Demographic Factors in Attitudes toward Artificial Intelligence. International Journal of Human–Computer Interaction, 40(2), 497–514. https://doi.org/10.1080/10447318.2022.2151730

Keaveney, S. M. (1995). Customer Switching Behavior in Service Industries: An Exploratory Study. Journal of Marketing, 59(2), 71–82. https://doi.org/10.1177/002224299505900206

Kinch, M. A., & Buell, R. W. (2022). Mitigating the Negative Effects of Customer Anxiety through Access to Human Contact (SSRN Scholarly Paper No. 3328971). Social Science Research Network. https://doi.org/10.2139/ssrn.3328971

Kleine, A.-K., Schaffernak, I., & Lermer, E. (2025). Exploring predictors of AI chatbot usage intensity among students: Within- and between-person relationships based on the technology acceptance model. Computers in Human Behavior: Artificial Humans, 3, 100113. https://doi.org/10.1016/j.chbah.2024.100113

Lankton N. K., McKnight D. H., & Tripp J. (2015). Technology, Humanness, and Trust: Rethinking Trust in Technology. https://aisel.aisnet.org/jais/vol16/iss10/1

Lazarus, R. S. (1991). Progress on a cognitive-motivational-relational theory of emotion. American Psychologist, 46(8), 819–834. https://doi.org/10.1037/0003-066X.46.8.819

Le, K. B. Q., Sajtos, L., Kunz, W. H., & Fernandez, K. V. (2025). The Future of Work: Understanding the Effectiveness of Collaboration Between Human and Digital Employees in Service. Journal of Service Research, 28(1), 186–205. https://doi.org/10.1177/10946705241229419

Leo, X., & Huh, Y. E. (2020). Who gets the blame for service failures? Attribution of responsibility toward robot versus human service providers and service firms. Computers in Human Behavior, 113, 106520. https://doi.org/10.1016/j.chb.2020.106520

Liu, Y., Park, Y., & Wang, H. (2025). The mediating effect of user satisfaction and the moderated mediating effect of AI anxiety on the relationship between perceived usefulness and subscription payment intention. Journal of Retailing and Consumer Services, 84, 104176. https://doi.org/10.1016/j.jretconser.2024.104176
 
Lv, L., Huang ,Minxue, Guan ,Dawei, & and Yang, K. (2022). Apology or gratitude? The effect of communication recovery strategies for service failures of AI devices. Journal of Travel & Tourism Marketing, 39(6), 570–587. https://doi.org/10.1080/10548408.2022.2162659

McLean, G., & Osei-Frimpong, K. (2019). Chat now… Examining the variables influencing the use of online live chat. Technological Forecasting and Social Change, 146, 55–67. https://doi.org/10.1016/j.techfore.2019.05.017

Menon, K., & Dubé, L. (2004). Service provider responses to anxious and angry customers: Different challenges, different payoffs. Journal of Retailing, 80(3), 229–237. https://doi.org/10.1016/j.jretai.2003.11.002

Meuter, M. L., Ostrom, A. L., Bitner, M. J., & Roundtree, R. (2003). The influence of technology anxiety on consumer use and experiences with self-service technologies. Journal of Business Research, 56(11), 899–906. https://doi.org/10.1016/S0148-2963(01)00276-4

Meyer (née Mozafari), N., Schwede, M., Hammerschmidt, M., & Weiger, W. H. (2022). 101. Users taking the blame? How service failure, recovery, and robot design affect user attributions and retention. Electronic Markets, 32(4), 2491–2505. https://doi.org/10.1007/s12525-022-00613-4

Mustafa, S. Z., Kar, A. K., & Janssen, M. F. W. H. A. (2020). Understanding the impact of digital service failure on users: Integrating Tan’s failure and DeLone and McLean’s success model. International Journal of Information Management, 53, 102119. https://doi.org/10.1016/j.ijinfomgt.2020.102119

Myin, M. T., & Watchravesringkan, K. (2024). Investigating consumers’ adoption of AI chatbots for apparel shopping. Journal of Consumer Marketing, 41(3), 314–327. https://doi.org/10.1108/JCM-03-2022-5234

Nomura, T., Suzuki, T., Kanda, T., & Kato, K. (2006). Measurement of Anxiety toward Robots. ROMAN 2006 - The 15th IEEE International Symposium on Robot and Human Interactive Communication, 372–377. https://doi.org/10.1109/ROMAN.2006.314462

Nunnally, J. C. (1978). An Overview of Psychological Measurement. In B. B. Wolman (Ed.), Clinical Diagnosis of Mental Disorders: A Handbook (pp. 97–146). Springer US. https://doi.org/10.1007/978-1-4684-2490-4_4

Oyman, M., Bal, D., & Ozer, S. (2022). Extending the technology acceptance model to explain how perceived augmented reality affects consumers’ perceptions. Computers in Human Behavior, 128, 107127. https://doi.org/10.1016/j.chb.2021.107127

Ozuem, W., Ranfagni, S., Willis, M., Salvietti, G., & Howell, K. (2024). Exploring the relationship between chatbots, service failure recovery and customer loyalty: A frustration–aggression perspective. Psychology & Marketing, 41(10), 2253–2273. https://doi.org/10.1002/mar.22051

Ozuem, W., Ranfagni, S., Willis, M., Salvietti, G., & Howell, K. (2025). Chatbots, service failure recovery, and online customer experience through lenses of frustration – aggression theory and signaling theory. Journal of Services Marketing, ahead-of-print(ahead-of-print). https://doi.org/10.1108/JSM-10-2024-0525

Parasuraman, A., Zeithaml, V. A., & Berry, L. L. (1985). A Conceptual Model of Service Quality and Its Implications for Future Research. Journal of Marketing, 49(4), 41–50. https://doi.org/10.1177/002224298504900403
 
Pavone, G., Meyer-Waarden, L., & Munzel, A. (2023). Rage Against the Machine: Experimental Insights into Customers’ Negative Emotional Responses, Attributions of Responsibility, and Coping Strategies in Artificial Intelligence–Based Service Failures. Journal of Interactive Marketing, 58(1), 52–71. https://doi.org/10.1177/10949968221134492

Pham, H. C., Duong, C. D., & Nguyen, G. K. H. (2024). What drives tourists’ continuance intention to use ChatGPT for travel services? A stimulus-organism-response perspective. Journal of Retailing and Consumer Services, 78, 103758. https://doi.org/10.1016/j.jretconser.2024.103758

Poushneh, A., & Vasquez-Parraga, A. Z. (2018). The role of customer readiness and participation in non-technology-based service delivery. Journal of Consumer Marketing, 35(6), 588–600. https://doi.org/10.1108/JCM-11-2016-2006

Rajaobelina, L., Prom Tep, S., Arcand, M., & Ricard, L. (2021). Creepiness: Its antecedents and impact on loyalty when interacting with a chatbot. Psychology & Marketing, 38(12), 2339–2356. https://doi.org/10.1002/mar.21548

Rese, A., Ganster, L., & Baier, D. (2020). Chatbots in retailers’ customer communication: How to measure their acceptance? Journal of Retailing and Consumer Services, 56, 102176. https://doi.org/10.1016/j.jretconser.2020.102176

Rheu, M. (MJ), Dai, Y. (Nancy), Meng, J., & Peng, W. (2024). When a Chatbot Disappoints You: Expectancy Violation in Human-Chatbot Interaction in a Social Support Context. Communication Research, 51(7), 782–814. https://doi.org/10.1177/00936502231221669
 
Saif, N., Khan, S. U., Shaheen, I., ALotaibi, F. A., Alnfiai, M. M., & Arif, M. (2024). Chat-GPT; validating Technology Acceptance Model (TAM) in education sector via ubiquitous learning mechanism. Computers in Human Behavior, 154, 108097. https://doi.org/10.1016/j.chb.2023.108097

Sands, S., Ferraro, C., Campbell, C., & Tsao, H.-Y. (2020). Managing the human–chatbot divide: How service scripts influence service experience. Journal of Service Management, 32(2), 246–264. https://doi.org/10.1108/JOSM-06-2019-0203

Sheehan, B., Jin, H. S., & Gottlieb, U. (2020). Customer service chatbots: Anthropomorphism and adoption. Journal of Business Research, 115, 14–24. https://doi.org/10.1016/j.jbusres.2020.04.030

Smith, A. K., & Bolton, R. N. (2002). The effect of customers’ emotional responses to service failures on their recovery effort evaluations and satisfaction judgments. Journal of the Academy of Marketing Science, 30(1), 5–23. https://doi.org/10.1177/03079450094298

Smith et. al. (1999). A Model of Customer Satisfaction with Service Encounters Involving Failure and Recovery—Amy K. Smith, Ruth N. Bolton, Janet Wagner, 1999. https://journals.sagepub.com/doi/full/10.1177/002224379903600305

Thomaz, F., Salge, C., Karahanna, E., & Hulland, J. (2020). Learning from the Dark Web: Leveraging conversational agents in the era of hyper-privacy to enhance marketing. Journal of the Academy of Marketing Science, 48(1), 43–63. https://doi.org/10.1007/s11747-019-00704-3
 
Tran, A. D., Pallant, J. I., & Johnson, L. W. (2021). Exploring the impact of chatbots on consumer sentiment and expectations in retail. Journal of Retailing and Consumer Services, 63, 102718. https://doi.org/10.1016/j.jretconser.2021.102718

Venkatesh, V., Thong, J. Y. L., & Xu, X. (2012). Consumer Acceptance and Use of Information Technology: Extending the Unified Theory of Acceptance and Use of Technology. MIS Quarterly, 36(1), 157–178. https://doi.org/10.2307/41410412

Wang, Y.-Y., & Wang, Y.-S. (2022). Development and validation of an artificial intelligence anxiety scale: An initial application in predicting motivated learning behavior. Interactive Learning Environments, 30(4), 619–634. https://doi.org/10.1080/10494820.2019.1674887

Wilson, M. L., Huggins-Manley, A. C., Ritzhaupt, A. D., & Ruggles, K. (2023). Development of the Abbreviated Technology Anxiety Scale (ATAS). Behavior Research Methods, 55(1), 185–199. https://doi.org/10.3758/s13428-022-01820-9

Xing, X., Song, M., Duan, Y., & Mou, J. (2022). Effects of different service failure types and recovery strategies on the consumer response mechanism of chatbots. Technology in Society, 70, 102049. https://doi.org/10.1016/j.techsoc.2022.102049

Xu, J. (David). (2016). Retaining customers by utilizing technology-facilitated chat: Mitigating website anxiety and task complexity. Information & Management, 53(5), 554–569. https://doi.org/10.1016/j.im.2015.12.007
 
Yoganathan, V., Osburg, V.-S., H. Kunz, W., & Toporowski, W. (2021). 107. Check-in at the Robo-desk: Effects of automated social presence on social cognition and service implications. Tourism Management, 85, 104309. https://doi.org/10.1016/j.tourman.2021.104309

Yu, S., Xiong, J. (Jill), & Shen, H. (2024). The rise of chatbots: The effect of using chatbot agents on consumers’ responses to request rejection. Journal of Consumer Psychology, 34(1), 35–48. https://doi.org/10.1002/jcpy.1330

Yun, J., & Park, J. (2022). The Effects of Chatbot Service Recovery With Emotion Words on Customer Satisfaction, Repurchase Intention, and Positive Word-Of-Mouth. Frontiers in Psychology, 13. https://doi.org/10.3389/fpsyg.2022.922503

Yu-Shan (Sandy) Huang & Paula Dootson. (2022). Chatbots and service failure: When does it lead to customer aggression—ScienceDirect. https://www.sciencedirect.com/science/article/pii/S0969698922001370

Yu-Shan (Sandy) Huang &Wei-Kang Kao. (2021). Chatbot service usage during a pandemic: Fear and social distancing. The Service Industries Journal. https://www.tandfonline.com/doi/abs/10.1080/02642069.2021.1957845

Zeithaml, V. A., Berry, L. L., & Parasuraman, A. (1996). The Behavioral Consequences of Service Quality. Journal of Marketing, 60(2), 31–46. https://doi.org/10.1177/002224299606000203

Zhang, J., Lu, X., Zheng, W., & Wang, X. (2024). It’s better than nothing: The influence of service failures on user reusage intention in AI chatbot. Electronic Commerce Research and Applications, 67, 101421. https://doi.org/10.1016/j.elerap.2024.101421

Zhang, R. W., Liang, X., & Wu, S.-H. (2024b). When chatbots fail: Exploring user coping following a chatbots-induced service failure. Information Technology & People, 37(8), 175–195. https://doi.org/10.1108/ITP-08-2023-0745

Zhu, Y., Zhang, J., & Wu, J. (2023). Who did what and when? The effect of chatbots’ service recovery on customer satisfaction and revisit intention. Journal of Hospitality and Tourism Technology, 14(3), 416–429. https://doi.org/10.1108/JHTT-06-2021-0164

Zhu, Y., Zhang, J., Wu, J., & Liu, Y. (2022). AI is better when I’m sure: The influence of certainty of needs on consumers’ acceptance of AI chatbots. Journal of Business Research, 150, 642–652. https://doi.org/10.1016/j.jbusres.2022.06.044

Zogaj, A., Mähner, P. M., Yang, L., & Tscheulin, D. K. (2023). It’s a Match! The effects of chatbot anthropomorphization and chatbot gender on consumer behavior. Journal of Business Research, 155, 113412. https://doi.org/10.1016/j.jbusres.2022.113412
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98919-
dc.description.abstract近年來,隨著聊天機器人在顧客服務中的應用快速增長,商家導入聊天機器人所帶來的顧客體驗與潛在影響逐漸受到重視。雖然已有研究關注聊天機器人的互動設計、接受度與顧客滿意等議題,但針對服務失誤情境下,顧客是否會產生與聊天機器人相關的焦慮情緒,進而影響其對服務品質的評價與後續行為意圖,仍缺乏系統性的探討。為填補此重要研究缺口,本研究旨在建立一實證模型,從商家聊天機器人的服務失誤出發,探討其是否會導致顧客針對聊天機器人的焦慮情緒,降低顧客感知服務品質,進而影響顧客後續行為意圖。

本研究以具有聊天機器人使用經驗、並在六個月內有經歷過商家或品牌聊天機器人服務失誤,且對整體事件及使用過程體驗都還保有一定程度之印象的使用者為調查對象,透過SurveyCake網站進行電子問卷調查,採用簡單隨機抽樣法回收有效問卷共511份,採結構方程式(Structural Equation Modeling)的統計方式進行模型分析與假說驗證,研究結果發現,經歷過商家聊天機器人服務失誤(包含功能性失誤、互動性失誤),會正向影響顧客的聊天機器人焦慮,進而降低顧客感知服務品質,並對顧客的後續行為意圖造成負面影響。

綜合上述,本研究表明,商家的聊天機器人功能性失誤與互動性失誤,是顧客聊天機器人焦慮的重要影響因素。本研究亦針對次研究結果進行學術與管理意涵方面的探討,並提供未來研究建議與發展方向。
zh_TW
dc.description.abstractIn recent years, with the rapid growth of chatbot applications in customer service, the customer experience and potential impact of chatbots introduced by businesses have gradually gained attention. While existing research has focused on issues such as chatbot interaction design, acceptance, and customer satisfaction, there remains a lack of systematic exploration into whether customers experience anxiety related to chatbots in service failure scenarios, which may influence their evaluations of service quality and subsequent behavioral intentions. To address this critical research gap, this study aims to establish an empirical model that examines whether service failures in business chatbots lead to anxiety toward chatbots, reduce perceived service quality, and ultimately influence subsequent behavioral intentions.
This study targeted users who have prior experience with chatbots, have encountered service failures from business or brand chatbots within the past six months, and retain a clear impression of the overall event and usage process. Data were collected through an online questionnaire distributed via SurveyCake, using simple random sampling, resulting in 511 valid responses. Structural Equation Modeling (SEM) was employed for model analysis and hypothesis testing. The results indicate that experiencing service failures from business chatbots—including functional failures and interaction failures—positively influences customer chatbot anxiety, which in turn lowers perceived service quality and negatively affects subsequent behavioral intentions.
In summary, this study demonstrates that functional and interaction failures of business chatbots are key antecedents of customer chatbot anxiety. Theoretical and managerial implications are discussed, along with suggestions for future research and development.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-08-20T16:17:09Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-08-20T16:17:09Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents口試委員審定書 i
致謝 ii
中文摘要 iii
Abstract iv
目 次 vi
圖 次 viii
表 次 ix
第一章 緒論 1
第一節、研究動機與目的 1
第二節、研究流程 3
第二章 文獻回顧 4
第一節、服務中的聊天機器人 4
第二節、服務失誤 6
第三節、顧客聊天機器人焦慮 8
第四節、服務失誤與顧客聊天機器人焦慮 10
第五節、顧客聊天機器人焦慮與感知服務品質及行為意圖 12
第三章 研究方法 13
第一節、研究架構 13
第二節、研究假說 14
第三節、問卷調查 15
第四節、研究變數與衡量 16
第五節、資料分析方法 18
第四章 資料分析與研究結果 19
第一節、樣本屬性分析 19
第二節、衡量模型分析 27
第三節、結構方程式模型分析 33
第五章 結論與建議 35
第一節、研究結論 35
第二節、研究貢獻 37
第三節、管理意涵 38
第四節、研究限制與建議 39
參考文獻 40
-
dc.language.isozh_TW-
dc.subject聊天機器人zh_TW
dc.subject服務失誤zh_TW
dc.subject焦慮zh_TW
dc.subject感知服務品質zh_TW
dc.subject行為意圖zh_TW
dc.subjectService Failureen
dc.subjectChatboten
dc.subjectBehavioral Intentionen
dc.subjectPerceived Service Qualityen
dc.subjectAnxietyen
dc.title聊天機器人服務失誤對於顧客之影響zh_TW
dc.titleExploring the Influence of Chatbot Service Failures on Customersen
dc.typeThesis-
dc.date.schoolyear113-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee梁浩怡;林政佑zh_TW
dc.contributor.oralexamcommitteeHaw-Yi Liang;Cheng-Yu Linen
dc.subject.keyword聊天機器人,服務失誤,焦慮,感知服務品質,行為意圖,zh_TW
dc.subject.keywordChatbot,Service Failure,Anxiety,Perceived Service Quality,Behavioral Intention,en
dc.relation.page51-
dc.identifier.doi10.6342/NTU202504166-
dc.rights.note同意授權(限校園內公開)-
dc.date.accepted2025-08-14-
dc.contributor.author-college管理學院-
dc.contributor.author-dept國際企業學系-
dc.date.embargo-lift2027-08-06-
顯示於系所單位:國際企業學系

文件中的檔案:
檔案 大小格式 
ntu-113-2.pdf
  未授權公開取用
4.77 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved