請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98912完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 蔡曜陽 | zh_TW |
| dc.contributor.advisor | Yao-Yang Tsai | en |
| dc.contributor.author | 李新平 | zh_TW |
| dc.contributor.author | Xin-Ping Li | en |
| dc.date.accessioned | 2025-08-20T16:15:38Z | - |
| dc.date.available | 2025-09-19 | - |
| dc.date.copyright | 2025-08-20 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-08-14 | - |
| dc.identifier.citation | [1] W. A. Ayoola, W. J. Suder, and S. W. Williams, "Parameters controlling weld bead profile in conduction laser welding," J. Mater. Process. Technol., vol. 249, pp. 522–530, Nov. 2017, doi: 10.1016/j.jmatprotec.2017.06.026.
[2] J. Kim and H. Ki, "Scaling law for penetration depth in laser welding," J. Mater. Process. Technol., vol. 214, no. 12, pp. 2908–2914, Dec. 2014, doi: 10.1016/j.jmatprotec.2014.06.025. [3] Y. Mi et al., "Conduction mode laser welding with beam shaping using a deformable mirror," Opt. Laser Technol., vol. 148, p. 107718, Apr. 2022, doi: 10.1016/j.optlastec.2021.107718. [4] X. Dong, G. Wang, and M. Ghaderi, "Experimental investigation of the effect of laser parameters on the weld bead shape and temperature distribution during dissimilar laser welding of stainless steel 308 and carbon steel St 37," Infrared Phys. Technol., vol. 116, p. 103774, Jul. 2021, doi: 10.1016/j.infrared.2021.103774. [5] J.-P. Weberpals, P. Krueger, P. Berger, and T. Graf, "Understanding the influence of the focal position in laser welding on spatter reduction," in Proc. 30th Int. Congress Laser Mater. Process., Laser Microprocess. Nanomanufacturing (ICALEO), Orlando, FL, USA, Oct. 23–27, 2011, pp. 159–168, doi: 10.2351/1.5062230. [6] M. Kos, E. Arko, H. Kosler, and M. Jezeršek, "Penetration-depth control in a remote laser-welding system based on an optical triangulation loop," Opt. Lasers Eng., vol. 139, p. 106464, Apr. 2021, doi: 10.1016/j.optlaseng.2020.106464. [7] O. Çavuşoğlu, C. Yuce, and H. Aydın, "Mechanical characterization and microstructure of fiber laser welded TWIP980 steel depending on welding speed and focal distance," Optik, vol. 274, p. 170541, Feb. 2023, doi: 10.1016/j.ijleo.2023.170541. [8] A. K. Sinha, D. Y. Kim, and D. Ceglarek, "Correlation analysis of the variation of weld seam and tensile strength in laser welding of galvanized steel," Optics and Lasers in Engineering, vol. 51, no. 10, pp. 1143–1152, 2013, doi: 10.1016/j.optlaseng.2013.04.012. [9] M. Zhang, G. Chen, Y. Zhou, and S. Liao, "Optimization of deep penetration laser welding of thick stainless steel with a 10kW fiber laser," Mater. Des., vol. 53, pp. 568–576, Jan. 2014, doi: 10.1016/j.matdes.2013.06.066. [10] A. Ruggiero, L. Tricarico, A. G. Olabi, and K. Y. Benyounis, "Weld-bead profile and costs optimisation of the CO2 dissimilar laser welding process of low carbon steel and austenitic steel AISI316," Opt. Laser Technol., vol. 43, no. 1, pp. 82–90, Feb. 2011, doi: 10.1016/j.optlastec.2010.05.008. [11] J. Stavridis, A. Papacharalampopoulos, and P. Stavropoulos, "Quality assessment in laser welding: a critical review," Int. J. Adv. Manuf. Technol., vol. 94, no. 5-8, pp. 1825–1847, Jan. 2018, doi: 10.1007/s00170-017-0461-4. [12] X. Ni, Z. Zhou, X. Wen, and L. Li, "The use of Taguchi method to optimize the laser welding of sealing neuro-stimulator," Opt. Lasers Eng., vol. 49, no. 3, pp. 297–304, Mar. 2011, doi: 10.1016/j.optlaseng.2010.11.005. [13]H. Li, H. Ren, Z. Liu, F. Huang, G. Xia, and Y. Long, "In-situ monitoring system for weld geometry of laser welding based on multi-task convolutional neural network model," Measurement, vol. 204, p. 112138, 2022, doi: 10.1016/j.measurement.2022.112138. [14] K. Nam and H. Ki, "One camera-based laser keyhole welding monitoring system using deep learning," J. Manuf. Process., vol. 104, pp. 17–27, Aug. 2023, doi: 10.1016/j.jmapro.2023.08.056. [15] Y. Zhang, D. You, X. Gao, and S. Katayama, "Online Monitoring of Welding Status Based on a DBN Model During Laser Welding," Engineering, vol. 5, no. 4, pp. 671–678, Aug. 2019, doi: 10.1016/j.eng.2019.01.016. [16] W. Cai et al., "Application of sensing techniques and artificial intelligence-based methods to laser welding real-time monitoring: A critical review of recent literature," J. Manuf. Syst., vol. 57, pp. 1–18, Oct. 2020, doi: 10.1016/j.jmsy.2020.07.021. [17] W. Hao et al., "Study of weld pool monitoring system based on spatial filtering," J. Manuf. Process., vol. 76, pp. 638–645, Apr. 2022, doi: 10.1016/j.jmapro.2022.02.044. [18] L. Wang et al., "Monitoring of keyhole entrance and molten pool with quality analysis during adjustable ring mode laser welding," Appl. Opt., vol. 59, no. 6, pp. 1576–1584, Feb. 2020, doi: 10.1364/AO.383232. [19] F. Dong, Y. Chen, L. Kong, X. Liang, and K. Wang, "Vision detection and feature extraction of molten pool behavior in powder laser cladding," Journal of Materials Engineering, vol. 51, no. 11, pp. 197–204, 2023, doi: 10.11868/j.issn.1001-4381.2022.000865. [20] W. Cai, P. Jiang, L. Shu, S. Geng, and Q. Zhou, "Real-time identification of molten pool and keyhole using a deep learning-based semantic segmentation approach in penetration status monitoring," J. Manuf. Process., vol. 76, pp. 695–707, Apr. 2022, doi: 10.1016/j.jmapro.2022.02.058. [21] D. Baek, H. S. Moon, and S. H. Park, "In-process prediction of weld penetration depth using machine learning-based molten pool extraction technique in tungsten arc welding," J. Intell. Manuf., vol. 35, no. 1, pp. 129–145, Jan. 2024, doi: 10.1007/s10845-022-02013-z. [22] T. Lei, Y. Rong, J. Xu, and Y. Huang, "Experiment study and regression analysis of molten pool in laser welding," Opt. Laser Technol., vol. 108, pp. 534–541, Dec. 2018, doi: 10.1016/j.optlastec.2018.07.053. [23] "HSL和HSV色彩空間," Wikipedia, Jul. 2025. Accessed: Jul. 11, 2025. [Online]. Available: https://zh.wikipedia.org/zh-tw/HSL%E5%92%8CHSV%E8%89%B2%E5%BD%A9%E7%A9%BA%E9%97%B4 [24] "K-means clustering," Wikipedia, Jul. 2025. Accessed: Jul. 11, 2025. [Online]. Available: https://en.wikipedia.org/wiki/K-means_clustering [25] S. Lloyd, "Least squares quantization in PCM," IEEE Trans. Inf. Theory, vol. 28, no. 2, pp. 129–137, Mar. 1982, doi: 10.1109/TIT.1982.1056489. [26] J. B. MacQueen, "Some Methods for Classification and Analysis of Multivariate Observations," in Proc. 5th Berkeley Symp. Math. Statist. Probab., Berkeley, CA, USA, 1967, vol. 1, pp. 281–297. [Online]. Available: http://projecteuclid.org/euclid.bsmsp/1200512992 [27] X. Xu, S. Xu, L. Jin, and E. Song, "Characteristic analysis of Otsu threshold and its applications," Pattern Recognit. Lett., vol. 32, no. 7, pp. 956–961, May 2011, doi: 10.1016/j.patrec.2011.01.021. [28] J. H. Friedman and J. W. Tukey, "A Projection Pursuit Algorithm for Exploratory Data Analysis," IEEE Trans. Comput., vol. C-23, no. 9, pp. 881–890, Sep. 1974, doi: 10.1109/T-C.1974.224051. [29] A. Tanchenko, "Visual-PSNR measure of image quality," J. Vis. Commun. Image Represent., vol. 25, no. 5, pp. 874–878, Jul. 2014, doi: 10.1016/j.jvcir.2014.01.008. [30] J. Hao et al., "Molten pool image processing and quality monitoring of laser cladding process based on coaxial vision," Optik, vol. 291, p. 171360, Nov. 2023, doi: 10.1016/j.ijleo.2023.171360. [31] Y. Chen and G. Weng, "An active contour model based on local pre-piecewise fitting image," Optik, vol. 248, p. 168130, Dec. 2021, doi: 10.1016/j.ijleo.2021.168130. [32] B. Wang, L. L. Chen, and J. Cheng, "New result on maximum entropy threshold image segmentation based on P system," Optik, vol. 163, pp. 81–85, Jun. 2018, doi: 10.1016/j.ijleo.2018.02.062. [33] P. Soille, "Opening and Closing," in Morphological Image Analysis, Berlin, Heidelberg: Springer, 2004, ch. 4. doi: 10.1007/978-3-662-05088-0_4. [34] Q. Yang et al., "Real-time width control of molten pool in laser engineered net shaping based on dual-color image," Opt. Laser Technol., vol. 123, p. 105925, Mar. 2020, doi: 10.1016/j.optlastec.2019.105925. [35] C.-S. Cheng, Theory of Factorial Design: Single- and Multi-Stratum Experiments, 1st ed. Boca Raton, FL, USA: Chapman and Hall/CRC, 2014. doi: 10.1201/b16253. [36] E. Ostertagová, "Modelling using Polynomial Regression," Procedia Eng., vol. 48, pp. 500-506, 2012. doi: 10.1016/j.proeng.2012.09.545. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98912 | - |
| dc.description.abstract | 本研究以雷射銲接加工頭結合六軸工業機械手臂為實驗平台,並搭配工業相機及定焦鏡頭,於銲接過程中即時擷取熔池影像。為系統性探討製程參數對熔池外形之影響,採用全因子實驗法規劃不同功率、雷射加工頭到工件距離及銲接速率之組合,並結合各條件下實際量測之銲道寬度與滲透深度,建立熔池特徵與銲道結果之關聯。
在影像處理流程方面,針對雷射銲接過程中對影像造成之雜訊干擾,運用工業相機搭配 Python 與 OpenCV 函式庫進行逐幀影像處理。經影像標定後,從原始 4096×3000 像素影像中截取包含熔池主體的 224×224 區域,經色彩空間轉換、分群演算法分割、形態學閉運算修補、濾波降噪與閾值二值化後,成功擷取熔池外形特徵並計算有效區域之像素數據,為後續分析奠定基礎。 實驗結果顯示,功率對熔池面積具有最顯著之正相關影響,為決定熔池尺寸的關鍵參數;雷射加工頭到工件距離的作用呈現非單調性,於距離 20 mm 時熔池面積達最大值;銲接速率則與熔池尺寸呈顯著負相關,速率愈快熔池面積愈小。 在銲道結果預測方面,本研究以熔池面積與長寬比為輸入特徵,利用二次多項式回歸分析建立銲道寬度與滲透深度之預測模型。銲道寬度模型具高解釋力(R²=0.871)、低誤差(MAE=0.185mm、MAPE=9.43%),預測表現優良;然而,滲透深度模型的解釋度較低(R²=0.347),即便新增長寬比後僅提升至 R²=0.3905,預測精度改善有限。誤差分析指出,當長寬比高於 2.1 時,模型低估極深熔深;而在中等熔深區間則易出現高估情形。 本研究建立了熔池影像處理流程及建立熔池特徵與銲道結果之關聯,初步驗證了熔池影像特徵於銲接品質預測上的可行性。所提出之方法可作為即時監控與製程參數調整的基礎,未來可透過擴充特徵變數、增加樣本數據及導入進階學習模型,以進一步提升滲透深度之預測能力,邁向智慧化銲接品質監控。 | zh_TW |
| dc.description.abstract | This study employs a laser welding head integrated with a six-axis industrial robot arm as the experimental platform, combined with an industrial camera and a fixed-focus lens to capture melt pool images in real time during welding. A full factorial experimental design was adopted to systematically investigate the effects of process parameters—including laser power, standoff distance, and welding speed—on melt pool geometry. The measured weld bead width and penetration depth under each condition were correlated with the extracted melt pool features.
For image processing, an industrial camera with Python and the OpenCV library was utilized to address noise interference caused by intense reflections and molten metal fluctuations during laser welding. After image calibration, a 224×224-pixel region containing the melt pool was cropped from the original 4096×3000-pixel image. Subsequent steps, including color space conversion, clustering-based segmentation, morphological closing, filtering and denoising, and thresholding, enabled accurate extraction of melt pool geometric features and pixel-based measurements. Experimental results indicate that laser power exerts the most significant positive influence on melt pool area, while the effect of standoff distance is non-monotonic, with a maximum melt pool area observed at 20 mm. Welding speed shows a strong negative correlation with melt pool size. Furthermore, second-order polynomial regression models were developed to predict weld bead width and penetration depth based on melt pool area and aspect ratio. The bead width model demonstrated high explanatory power (R² = 0.871) with low prediction error (MAE = 0.185 mm, MAPE = 9.43%), whereas the penetration depth model exhibited limited accuracy (R² = 0.347), improving only slightly after incorporating aspect ratio (R² = 0.3905). Error analysis revealed underestimation in cases of extremely deep penetration (aspect ratio > 2.1) and overestimation in moderate penetration ranges. This research establishes a melt pool image processing workflow and quantifies the relationship between process parameters, melt pool features, and weld quality. The findings demonstrate the feasibility of using melt pool image features for weld quality prediction and provide a foundation for real-time monitoring and process parameter adjustment. Future work will focus on expanding feature sets, increasing data diversity, and applying advanced learning models to enhance penetration depth prediction and enable intelligent welding quality control. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-08-20T16:15:38Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-08-20T16:15:38Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 誌謝 i
中文摘要 ii 英文摘要 iii 目次 v 圖次 viii 表次 xi 第 1 章 緒論 1 1.1 前言 1 1.2 文獻回顧 2 1.2.1 雷射銲接加工參數相關文獻 2 1.2.2 銲道尺寸對接合強度之影響相關文獻 4 1.2.3 影像感測器在銲接過程監控之應用文獻 6 1.2.4 雷射銲接熔池特徵提取相關文獻 8 1.2.5 銲接結果預測方法與模型相關文獻 10 1.3 研究動機與目的 12 1.4 論文大綱 14 第2章 基礎理論 15 2.1 影像處理方法理論 15 2.1.1 HSV色彩空間 15 2.1.2 K-Means 分群演算法 17 2.1.3 Otsu 閥值演算法 19 2.1.4 中值濾波 22 2.2 熔池影像特徵計算理論 23 2.2.1 迭代閾值法 23 2.2.2 形態學閉運算 24 2.2.3 最小外接矩形演算法 25 2.3 實驗方法理論 26 2.3.1 全因子實驗理論 26 2.3.2 二次多項式迴歸分析 28 第3章 實驗設備與規劃 31 3.1 實驗設備與儀器 31 3.1.1 304不鏽鋼薄板 31 3.1.2 工業型六軸機械手臂 32 3.1.3 工業型機器手臂控制器 34 3.1.4 雷射加工頭 36 3.1.5 光纖雷射源 37 3.1.6 恆溫冰水機 39 3.1.7 工業相機(CMOS) 40 3.1.8 工業型定焦鏡頭 42 3.1.9 吸收型中性濾光片(Absorptive ND Filter) 43 3.1.10 窄帶綠光濾光片 44 3.1.11 固態綠光雷射模組 46 3.1.12 數顯千分高度計與花崗岩測微平台 47 3.1.13 氬氣鋼瓶 49 3.2 實驗架構規劃 50 3.2.1 實驗影像擷取流程 50 3.2.2 實驗影像處理流程 52 3.3 實驗配置 57 3.3.1 實驗參數設定 58 第4章 實驗結果與討論 61 4.1 實驗參數對熔池外形的影響 61 4.1.1 實驗參數對熔池面積之影響 62 4.1.2 實驗參數對熔池長度之影響 63 4.1.3 實驗參數對熔池寬度之影響 65 4.1.4 實驗參數與熔池外形特徵預測模型 66 4.1.5 小結 67 4.2 缺陷性銲道結果 69 4.2.1 熱輸入不足-未產生熔池 69 4.2.2 熱輸入過高-燒穿 70 4.2.3 熱輸入不均-寬度、滲透深度分佈不均 72 第5章 結論與未來展望 74 5.1 結論 74 5.1.1 製程參數對熔池外形的影響 74 5.1.2 銲道結果之預測模型 75 5.2 未來展望 76 參考文獻 77 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 雷射銲接 | zh_TW |
| dc.subject | 影像感測器 | zh_TW |
| dc.subject | 熔池影像 | zh_TW |
| dc.subject | 預測模型 | zh_TW |
| dc.subject | 品質預測 | zh_TW |
| dc.subject | Image sensor | en |
| dc.subject | Laser welding | en |
| dc.subject | Quality prediction | en |
| dc.subject | Prediction model | en |
| dc.subject | Molten pool image | en |
| dc.title | 熔池影像特徵與雷射畫線品質之預測研究 | zh_TW |
| dc.title | A Predictive Study on Laser Marking Quality Based on Image Features | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 王世明;張弘岳 | zh_TW |
| dc.contributor.oralexamcommittee | Shih-Ming Wang;Hung-Yueh Chang | en |
| dc.subject.keyword | 雷射銲接,影像感測器,熔池影像,預測模型,品質預測, | zh_TW |
| dc.subject.keyword | Laser welding,Image sensor,Molten pool image,Prediction model,Quality prediction, | en |
| dc.relation.page | 80 | - |
| dc.identifier.doi | 10.6342/NTU202504327 | - |
| dc.rights.note | 未授權 | - |
| dc.date.accepted | 2025-08-15 | - |
| dc.contributor.author-college | 工學院 | - |
| dc.contributor.author-dept | 機械工程學系 | - |
| dc.date.embargo-lift | N/A | - |
| 顯示於系所單位: | 機械工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-2.pdf 未授權公開取用 | 4.2 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
