Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 化學工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98900
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor李奕霈zh_TW
dc.contributor.advisorYi-Pei Lien
dc.contributor.author蔡明軒zh_TW
dc.contributor.authorMing-Hsuan Tsaien
dc.date.accessioned2025-08-20T16:12:41Z-
dc.date.available2025-08-21-
dc.date.copyright2025-08-20-
dc.date.issued2025-
dc.date.submitted2025-08-12-
dc.identifier.citation1. Saal, J.E., et al., Materials design and discovery with high-throughput density functional theory: the open quantum materials database (OQMD). Jom, 2013. 65: p. 1501-1509.
2. Hafner, J., C. Wolverton, and G. Ceder, Toward computational materials design: the impact of density functional theory on materials research. MRS bulletin, 2006. 31(9): p. 659-668.
3. Haq, B.U., R. Ahmed, and S. Goumri-Said, DFT characterization of cadmium doped zinc oxide for photovoltaic and solar cell applications. Solar energy materials and solar cells, 2014. 130: p. 6-14.
4. Le Bahers, T., M. Rerat, and P. Sautet, Semiconductors used in photovoltaic and photocatalytic devices: assessing fundamental properties from DFT. The Journal of Physical Chemistry C, 2014. 118(12): p. 5997-6008.
5. Boukhvalov, D.W., et al., A computational investigation of the catalytic properties of graphene oxide: Exploring mechanisms by using DFT methods. ChemCatChem, 2012. 4(11): p. 1844-1849.
6. Gao, F., et al., A review on selective catalytic reduction of NO x by NH3 over Mn–based catalysts at low temperatures: Catalysts, mechanisms, kinetics and DFT calculations. Catalysts, 2017. 7(7): p. 199.
7. Li, S.-C., Y.-C. Lin, and Y.-P. Li, Understanding the catalytic activity of microporous and mesoporous zeolites in cracking by experiments and simulations. Catalysts, 2021. 11(9): p. 1114.
8. Yeh, J.Y., et al., Quantum mechanical calculations for biomass valorization over metal‐organic frameworks (MOFs). Chemistry–An Asian Journal, 2021. 16(9): p. 1049-1056.
9. Chen, L.-Y. and Y.-P. Li, Machine Learning Applications in Chemical Kinetics and Thermochemistry. 2023, Springer International Publishing. p. 203-226.
10. Johnston, H.S. and C. Parr, Activation energies from bond energies. I. Hydrogen transfer reactions. Journal of the American Chemical Society, 1963. 85(17): p. 2544-2551.
11. Krech, R. and D. McFadden, An empirical correlation of activation energy with molecular polarizability for atom abstraction reactions. Journal of the American Chemical Society, 1977. 99(26): p. 8402-8405.
12. Várhegyi, G., Empirical models with constant and variable activation energy for biomass pyrolysis. Energy & Fuels, 2019. 33(3): p. 2348-2358.
13. Buergi, H.B. and K.C. Dubler-Steudle, Empirical potential energy surfaces relating structure and activation energy. 2. Determination of transition-state structure for the spontaneous hydrolysis of axial tetrahydropyranyl acetals. Journal of the American Chemical Society, 1988. 110(22): p. 7291-7299.
14. Kagiya, T., et al., Evaluation of the Activation Energies of Radical Substitution Reactions in the Gaseous Phase. I. An Empirical Method Employing the Morse Function. Bulletin of the Chemical Society of Japan, 1969. 42(7): p. 1812-1819.
15. Liu, M., et al., Reaction mechanism generator v3. 0: advances in automatic mechanism generation. Journal of Chemical Information and Modeling, 2021. 61(6): p. 2686-2696.
16. Karelson, M., V.S. Lobanov, and A.R. Katritzky, Quantum-chemical descriptors in QSAR/QSPR studies. Chemical reviews, 1996. 96(3): p. 1027-1044.
17. Puzyn, T., J. Leszczynski, and M.T. Cronin, Recent advances in QSAR studies: methods and applications. 2010.
18. Hoonakker, F., et al., Condensed graph of reaction: considering a chemical reaction as one single pseudo molecule. Int. J. Artif. Intell. Tools, 2011. 20(2): p. 253-270.
19. van Gerwen, P., et al., Physics-based representations for machine learning properties of chemical reactions. Machine Learning: Science and Technology, 2022. 3(4): p. 045005.
20. Dutot, A.-L., J. Rude, and B. Aumont, Neural network method to estimate the aqueous rate constants for the OH reactions with organic compounds. Atmospheric Environment, 2003. 37(2): p. 269-276.
21. Allison, T.C., Application of an artificial neural network to the prediction of OH radical reaction rate constants for evaluating global warming potential. The Journal of Physical Chemistry B, 2016. 120(8): p. 1854-1863.
22. Fatemi, M., Prediction of ozone tropospheric degradation rate constant of organic compounds by using artificial neural networks. Analytica chimica acta, 2006. 556(2): p. 355-363.
23. Hao, Z., et al. ASGN: An active semi-supervised graph neural network for molecular property prediction. in Proceedings of the 26th ACM SIGKDD international conference on knowledge discovery & data mining. 2020.
24. Gasteiger, J., F. Becker, and S. Günnemann, Gemnet: Universal directional graph neural networks for molecules. Advances in Neural Information Processing Systems, 2021. 34: p. 6790-6802.
25. Mercado, R., et al., Graph networks for molecular design. Machine Learning: Science and Technology, 2021. 2(2): p. 025023.
26. Reiser, P., et al., Graph neural networks for materials science and chemistry. Communications Materials, 2022. 3(1): p. 93.
27. Shui, Z. and G. Karypis. Heterogeneous molecular graph neural networks for predicting molecule properties. in 2020 IEEE International Conference on Data Mining (ICDM). 2020. IEEE.
28. Henderson, R., D.-A. Clevert, and F. Montanari. Improving molecular graph neural network explainability with orthonormalization and induced sparsity. in International Conference on Machine Learning. 2021. PMLR.
29. Wang, Y., et al., Molecular contrastive learning of representations via graph neural networks. Nature Machine Intelligence, 2022. 4(3): p. 279-287.
30. Bongini, P., M. Bianchini, and F. Scarselli, Molecular generative graph neural networks for drug discovery. Neurocomputing, 2021. 450: p. 242-252.
31. Mansimov, E., et al., Molecular geometry prediction using a deep generative graph neural network. Scientific reports, 2019. 9(1): p. 20381.
32. Kearnes, S., et al., Molecular graph convolutions: moving beyond fingerprints. Journal of computer-aided molecular design, 2016. 30: p. 595-608.
33. Schütt, K., et al., Schnet: A continuous-filter convolutional neural network for modeling quantum interactions. Advances in neural information processing systems, 2017. 30.
34. Isert, C., K. Atz, and G. Schneider, Structure-based drug design with geometric deep learning. Current Opinion in Structural Biology, 2023. 79: p. 102548.
35. Arús-Pous, J., et al., SMILES-based deep generative scaffold decorator for de-novo drug design. Journal of cheminformatics, 2020. 12: p. 1-18.
36. Sharma, A., et al., SMILES to smell: decoding the structure–odor relationship of chemical compounds using the deep neural network approach. Journal of Chemical Information and Modeling, 2021. 61(2): p. 676-688.
37. Arús-Pous, J., et al., Randomized SMILES strings improve the quality of molecular generative models. Journal of cheminformatics, 2019. 11(1): p. 71.
38. Wang, S., et al. SMILES-BERT. ACM.
39. Goh, G.B., et al., Smiles2vec: An interpretable general-purpose deep neural network for predicting chemical properties. arXiv preprint arXiv:1712.02034, 2017.
40. Bjerrum, E.J., SMILES enumeration as data augmentation for neural network modeling of molecules. arXiv preprint arXiv:1703.07076, 2017.
41. Hirohara, M., et al., Convolutional neural network based on SMILES representation of compounds for detecting chemical motif. BMC Bioinformatics, 2018. 19(S19).
42. Li, X. and D. Fourches, SMILES Pair Encoding: A Data-Driven Substructure Tokenization Algorithm for Deep Learning. Journal of Chemical Information and Modeling, 2021. 61(4): p. 1560-1569.
43. Jiang, S. and P. Balaprakash. Graph Neural Network Architecture Search for Molecular Property Prediction. IEEE.
44. Grambow, C.A., L. Pattanaik, and W.H. Green, Deep Learning of Activation Energies. The Journal of Physical Chemistry Letters, 2020. 11(8): p. 2992-2997.
45. Chen, L.-Y., et al., Deep Learning-Based Increment Theory for Formation Enthalpy Predictions. The Journal of Physical Chemistry A, 2022. 126(41): p. 7548-7556.
46. Muthiah, B., S.-C. Li, and Y.-P. Li, Developing machine learning models for accurate prediction of radiative efficiency of greenhouse gases. Journal of the Taiwan Institute of Chemical Engineers, 2023. 151: p. 105123.
47. Farrar, E.H. and M.N. Grayson, Machine learning and semi-empirical calculations: a synergistic approach to rapid, accurate, and mechanism-based reaction barrier prediction. Chemical Science, 2022. 13(25): p. 7594-7603.
48. Marques, E., et al., Improving Accuracy and Transferability of Machine Learning Chemical Activation Energies by Adding Electronic Structure Information. Journal of Chemical Information and Modeling, 2023. 63(5): p. 1454-1461.
49. Choi, S., et al., Feasibility of activation energy prediction of gas‐phase reactions by machine learning. Chemistry–A European Journal, 2018. 24(47): p. 12354-12358.
50. Spiekermann, K.A., L. Pattanaik, and W.H. Green, Fast predictions of reaction barrier heights: toward coupled-cluster accuracy. The Journal of Physical Chemistry A, 2022. 126(25): p. 3976-3986.
51. G. Espley, S., et al., Machine learning reaction barriers in low data regimes: a horizontal and diagonal transfer learning approach. Digital Discovery, 2023/08/08. 2(4).
52. Kumar, S., et al., Kohn–Sham accuracy from orbital-free density functional theory via Δ-machine learning. The Journal of Chemical Physics, 2023. 159(24).
53. Lewis‐Atwell, T., P.A. Townsend, and M.N. Grayson, Machine learning activation energies of chemical reactions. Wiley Interdisciplinary Reviews: Computational Molecular Science, 2022. 12(4): p. e1593.
54. Ramakrishnan, R., et al., Big data meets quantum chemistry approximations: the Δ-machine learning approach. Journal of chemical theory and computation, 2015. 11(5): p. 2087-2096.
55. Bogojeski, M., et al., Quantum chemical accuracy from density functional approximations via machine learning. Nature Communications, 2020. 11(1).
56. Ruth, M., D. Gerbig, and P.R. Schreiner, Machine learning of coupled cluster (T)-energy corrections via delta (Δ)-learning. Journal of Chemical Theory and Computation, 2022. 18(8): p. 4846-4855.
57. Plehiers, P.P., et al., Fast estimation of standard enthalpy of formation with chemical accuracy by artificial neural network correction of low-level-of-theory ab initio calculations. Chemical Engineering Journal, 2021. 426: p. 131304.
58. Wan, Z., Q.D. Wang, and J. Liang, Accurate prediction of standard enthalpy of formation based on semiempirical quantum chemistry methods with artificial neural network and molecular descriptors. International Journal of Quantum Chemistry, 2021. 121(2): p. e26441.
59. García-Andrade, X., et al., Barrier height prediction by machine learning correction of semiempirical calculations. The Journal of Physical Chemistry A, 2023. 127(10): p. 2274-2283.
60. Anika, O.C., et al., Prospects of low and zero-carbon renewable fuels in 1.5-degree net zero emission actualisation by 2050: A critical review. Carbon Capture Science & Technology, 2022. 5: p. 100072.
61. Witkowski, D., M. Groendyk, and D.A. Rothamer, Kinetic model-based group contribution method for derived cetane number prediction of oxygenated fuel components and blends. Combustion and Flame, 2023. 255: p. 112883.
62. Aljaman, B., et al., A comprehensive neural network model for predicting flash point of oxygenated fuels using a functional group approach. Fuel, 2022. 317: p. 123428.
63. Lechner, M.D., Viscosity of pure organic liquids and binary liquid mixtures. 2017.
64. Luning Prak, D., et al., Cetane number, derived cetane number, and cetane index: When correlations fail to predict combustibility. Fuel, 2021. 289: p. 119963.
65. Luning Prak, D.J., et al., Densities and Viscosities at 293.15–373.15 K, Speeds of Sound and Bulk Moduli at 293.15–333.15 K, Surface Tensions, and Flash Points of Binary Mixtures of <i>n</i>-Hexadecane and Alkylbenzenes at 0.1 MPa. Journal of Chemical & Engineering Data, 2017. 62(5): p. 1673-1688.
66. Li, D., et al., Innovative molecular descriptors in QSPR modeling: Integrating Carnahan-Starling EoS for predicting diffusion coefficients in hydrocarbons and mixtures. Journal of Molecular Liquids, 2024. 413: p. 125994.
67. Sengupta, D., et al., QSPR and Artificial Neural Network Predictions of Hypergolic Ignition Delays for Energetic Ionic Liquids. 2023.
68. Khajeh, A. and H. Modarress, QSPR prediction of flash point of esters by means of GFA and ANFIS. Journal of hazardous materials, 2010. 179(1-3): p. 715-720.
69. Han, K.J. and S.J. In, The measurement and prediction of flash point for binary mixtures {c 1~ c 3 alcohols+ p-xylene} at 101.3 kpa. Open journal of safety science and technology, 2017. 7(01): p. 1.
70. Gmehling, J. and P. Rasmussen, Flash points of flammable liquid mixtures using UNIFAC. Industrial & Engineering Chemistry Fundamentals, 1982. 21(2): p. 186-188.
71. Makrodimitri, Z.Α., et al., Viscosity of heavy n-alkanes and diffusion of gases therein based on molecular dynamics simulations and empirical correlations. The Journal of Chemical Thermodynamics, 2015. 91: p. 101-107.
72. Reinisch, J. and A. Klamt, Predicting flash points of pure compounds and mixtures with COSMO-RS. Industrial & Engineering Chemistry Research, 2015. 54(51): p. 12974-12980.
73. Liao, H.-C., et al., Directed Message Passing Neural Networks for Accurate Prediction of Polymer-Solvent Interaction Parameters. 2025, American Chemical Society (ACS).
74. Lin, Y.-H., et al., Advancing vapor pressure prediction: A machine learning approach with directed message passing neural networks. Journal of the Taiwan Institute of Chemical Engineers, 2024: p. 105926.
75. Leenhouts, R.J., et al., Pooling solvent mixtures for solvation free energy predictions. Chemical Engineering Journal, 2025. 513: p. 162232.
76. Zhang, H., et al., Learning Molecular Mixture Property Using Chemistry-Aware Graph Neural Network. PRX Energy, 2024. 3(2).
77. Hanaoka, K., Deep Neural Networks for Multicomponent Molecular Systems. ACS Omega, 2020. 5(33): p. 21042-21053.
78. Leenhouts, R.J., et al., Property prediction of fuel mixtures using pooled graph neural networks. Fuel, 2025. 381: p. 133218.
79. Fayet, G. and P. Rotureau, New QSPR Models to Predict the Flammability of Binary Liquid Mixtures. Molecular Informatics, 2019. 38(8-9): p. 1800122.
80. Comesana, A.E., et al., A systematic method for selecting molecular descriptors as features when training models for predicting physiochemical properties. Fuel, 2022. 321: p. 123836.
81. Chang, H.-C., M.-H. Tsai, and Y.-P. Li, Enhancing Activation Energy Predictions under Data Constraints Using Graph Neural Networks. Journal of Chemical Information and Modeling, 2025. 65(3): p. 1367-1377.
82. Freitas, R.S.M. and X. Jiang, Descriptors-based machine-learning prediction of cetane number using quantitative structure–property relationship. Energy and AI, 2024. 17: p. 100385.
83. Chew, A.K., et al., Advancing material property prediction: using physics-informed machine learning models for viscosity. Journal of Cheminformatics, 2024. 16(1).
84. Espley, S.G., et al., Machine learning reaction barriers in low data regimes: a horizontal and diagonal transfer learning approach. Digital Discovery, 2023. 2(4): p. 941-951.
85. Larsson, T., F. Vermeire, and S. Verhelst. Machine Learning for Fuel Property Predictions: A Multi-Task and Transfer Learning Approach. SAE International.
86. Schweidtmann, A.M., et al., Graph neural networks for prediction of fuel ignition quality. Energy & fuels, 2020. 34(9): p. 11395-11407.
87. Fabian, B., et al., Molecular representation learning with language models and domain-relevant auxiliary tasks. arXiv 2020. arXiv preprint arXiv:2011.13230. 10.
88. Lee, C., et al., Scalable Multi-Task Transfer Learning for Molecular Property Prediction. arXiv preprint arXiv:2410.00432, 2024.
89. Song, K. and J. Li, The neural network based Δ-machine learning approach efficiently brings the DFT potential energy surface to the CCSD(T) quality: a case for the OH + CH<sub>3</sub>OH reaction. Physical Chemistry Chemical Physics, 2023. 25(16): p. 11192-11204.
90. Kleine Büning, J.B. and S. Grimme, Computation of CCSD(T)-Quality NMR Chemical Shifts via Δ-Machine Learning from DFT. Journal of Chemical Theory and Computation, 2023. 19(12): p. 3601-3615.
91. Bogojeski, M., et al., Quantum chemical accuracy from density functional approximations via machine learning. Nature communications, 2020. 11(1): p. 5223.
92. Spiekermann, K., L. Pattanaik, and W.H. Green, High accuracy barrier heights, enthalpies, and rate coefficients for chemical reactions. Scientific Data, 2022. 9(1): p. 417.
93. Bemis, G.W. and M.A. Murcko, The Properties of Known Drugs. 1. Molecular Frameworks. Journal of Medicinal Chemistry, 1996. 39(15): p. 2887-2893.
94. Greenman, K.P., W.H. Green, and R. Gómez-Bombarelli, Multi-fidelity prediction of molecular optical peaks with deep learning. Chemical science, 2022. 13(4): p. 1152-1162.
95. Yang, K., et al., Analyzing learned molecular representations for property prediction. Journal of chemical information and modeling, 2019. 59(8): p. 3370-3388.
96. Heid, E. and W.H. Green, Machine learning of reaction properties via learned representations of the condensed graph of reaction. Journal of Chemical Information and Modeling, 2021. 62(9): p. 2101-2110.
97. Bannwarth, C., S. Ehlert, and S. Grimme, GFN2-xTB—An accurate and broadly parametrized self-consistent tight-binding quantum chemical method with multipole electrostatics and density-dependent dispersion contributions. Journal of chemical theory and computation, 2019. 15(3): p. 1652-1671.
98. Janecek, D., D. Rothamer, and J. Ghandhi, Fuel-Substitution Method for Investigating the Kinetics of Low-Volatility Fuels under Enginelike Operating Conditions. Energy & Fuels, 2016.
99. Hu, J. and A.M. Burns, New method predicts cloud, pour, flash points of distillate blends. Hydrocarbon Processing, 1970. 49(11): p. 213-&.
100. Arrhenius, S., Über die innere Reibung verdünnter wässeriger Lösungen. Zeitschrift für Physikalische Chemie, 1887. 1U(1): p. 285-298.
101. Heid, E., et al., Chemprop: a machine learning package for chemical property prediction. Journal of Chemical Information and Modeling, 2023. 64(1): p. 9-17.
102. Evans, M. and M. Polanyi, Further considerations on the thermodynamics of chemical equilibria and reaction rates. Transactions of the Faraday Society, 1936. 32: p. 1333-1360.
103. Bell, R.P., The theory of reactions involving proton transfers. Proceedings of the Royal Society of London. Series A-Mathematical and Physical Sciences, 1936. 154(882): p. 414-429.
104. LoPachin, R.M., et al., Application of the hard and soft, acids and bases (HSAB) theory to toxicant–target interactions. Chemical research in toxicology, 2012. 25(2): p. 239-251.
105. Landrum, G., RDKit: Open‑source cheminformatics, in Release. 2013. p. 4.
106. Mayer, M.A., et al., Can machine learning predict fuel properties accurately? 2023.
107. Karthikeyan, M., R.C. Glen, and A. Bender, General Melting Point Prediction Based on a Diverse Compound Data Set and Artificial Neural Networks. Journal of Chemical Information and Modeling, 2005. 45(3): p. 581-590.
108. Yonei, T., et al., Quantum Chemical Study of Cetane Improvers. Energy & Fuels, 2003. 17(3): p. 725-730.
109. Saldana, D.A., et al., Flash point and cetane number predictions for fuel compounds using quantitative structure property relationship (QSPR) methods. Energy & Fuels, 2011. 25(9): p. 3900-3908.
110. Rijal, D., et al., Insights of Density Functional Theory into JP-10 Tetrahydrodicyclopentadiene Fuel Properties. Processes, 2025. 13(2): p. 543.
111. Noorizadeh, S., The maximum hardness and minimum polarizability principles in accordance with the Bent rule. Journal of Molecular Structure: THEOCHEM, 2005. 713(1-3): p. 27-32.
112. Mahboob, A., et al., On quantitative structure-property relationship (QSPR) analysis of physicochemical properties and anti-hepatitis prescription drugs using a linear regression model. Heliyon, 2024. 10(4): p. e25908.
113. Gutman, I., et al., Alkanes with small and large Randić connectivity indices. Chemical Physics Letters, 1999. 306(5-6): p. 366-372.
114. Gopinath, A., S. Puhan, and G. Nagarajan, Effect of unsaturated fatty acid esters of biodiesel fuels on combustion, performance and emission characteristics of a DI diesel engine. International Journal of Energy & Environment, 2010(3).
115. Gad, E.A., J.H. Al-Fahemi, and N.A. Albis, QSPR Model for Predicting Flash Point of Some Organic Hydrocarbons.
116. Zhao, Q., et al., Comprehensive exploration of graphically defined reaction spaces. Scientific Data, 2023. 10(1): p. 145.
117. Stuyver, T. and C.W. Coley, Machine Learning‐Guided Computational Screening of New Candidate Reactions with High Bioorthogonal Click Potential. Chemistry–A European Journal, 2023. 29(28): p. e202300387.
118. Stuyver, T. and C.W. Coley, Quantum chemistry-augmented neural networks for reactivity prediction: Performance, generalizability, and explainability. The Journal of Chemical Physics, 2022. 156(8).
119. Morris, C., et al., Weisfeiler and Leman Go Neural: Higher-Order Graph Neural Networks. Proceedings of the AAAI Conference on Artificial Intelligence, 2019. 33(01): p. 4602-4609.
120. Hamilton, W., Z. Ying, and J. Leskovec, Inductive representation learning on large graphs. Advances in neural information processing systems, 2017. 30.
121. Morgan, H.L., The generation of a unique machine description for chemical structures-a technique developed at chemical abstracts service. Journal of chemical documentation, 1965. 5(2): p. 107-113.
122. McGregor, M.J. and P.V. Pallai, Clustering of large databases of compounds: using the MDL “keys” as structural descriptors. Journal of chemical information and computer sciences, 1997. 37(3): p. 443-448.
123. Li, S.-C., et al., When Do Quantum Mechanical Descriptors Help Graph Neural Networks to Predict Chemical Properties? Journal of the American Chemical Society, 2024. 146(33): p. 23103-23120.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98900-
dc.description.abstract高品質化學資料取得不易,嚴重限制了機器學習模型的應用。本論文以三項策略為核心,針對「反應活化能」與「多成分燃料混合物性質」兩項代表性任務,提出一套整合式方法,展示在資料稀缺情境下仍可獲得準確預測。
特徵工程透過快速且低成本的描述子將化學知識導入模型。此策略在混合物任務中特別有效,因為分子量、柔韌度等巨觀相關特徵能大幅降低閃火點與黏度預測誤差;但在活化能任務中,只有反應熱力學描述子帶來有限改進,顯示簡單分子特徵難以捕捉過渡態細節。
遷移學習藉由大量低擬真資料預訓練模型,再微調少量高擬真實驗數據,可提升泛化能力。然而其成效高度依賴於預訓練和微調領域相似度:若預訓練資料與目標資料反應類型或混合物組成相近,誤差可大幅降低;反之則可能引入負遷移。
差值學習在兩項任務中均展現最穩定與顯著的效益。模型或預測高、低擬真值之差,或將低擬真值作為輔助輸入,以修正物理近似的系統性偏差。結果顯示,活化能模型僅用一成高階資料即可優於訓練在完整資料集上的基準模型;混合物模型達到與數據集原作者相當甚至更穩定的表現,且在推論階段幾乎無額外計算成本。
綜上所述,透過結合化學直覺與多擬真度學習技術,本研究在高階資料有限的前提下,建立了兼具精度與資料效率的模型。後續可將此框架拓展至催化活性、環境性質等領域,並結合主動學習以優先計算最具價值的高擬真樣本,或採用更先進的圖網路與自監督預訓練,進一步縮短資料與模型需求的落差,促進化學工程與永續燃料開發的研究進程。

關鍵詞:資料稀缺、差值學習、特徵工程、遷移學習、化學性質預測、燃料混合物
zh_TW
dc.description.abstractThe scarcity of high-quality chemical data severely limits the practical applications of machine learning (ML) models. This thesis presents an integrated framework built upon three key strategies—feature engineering, transfer learning, and delta learning—to address two representative challenges: predicting reaction activation energies and the properties of multi-component fuel mixtures. We demonstrate that accurate predictions can still be achieved under data-constrained conditions.
Feature engineering incorporates chemical knowledge into the model using fast and low-cost descriptors. This approach is particularly effective for mixture property prediction, where macroscopic attributes such as molecular weight and flexibility help reduce prediction errors for flash point and viscosity. However, in activation energy tasks, only thermodynamic descriptors provide limited improvements, suggesting that simple molecular features are insufficient to capture the intricacies of transition states.
Transfer learning improves generalization by pretraining on abundant low-fidelity data and fine-tuning with limited high-fidelity experimental data. Its effectiveness, however, strongly depends on the similarity between pretraining and target domains: substantial error reductions are possible when reaction types or mixture compositions are closely aligned, but performance may degrade due to negative transfer if they diverge.
Delta learning demonstrates the most consistent and significant benefits across both tasks. By either predicting the difference between high- and low-fidelity values or incorporating the low-fidelity estimate as an auxiliary input, the model effectively corrects systematic biases from physical approximations. In activation energy prediction, delta learning outperforms full-data baselines using only 10% of the high-level data. In mixture prediction, it achieves accuracy on par with or better than the dataset originators, with minimal additional inference cost.
In summary, by combining chemical intuition with multi-fidelity learning strategies, this study establishes data-efficient models that maintain high accuracy even with limited high-level data. This framework can be extended to other domains such as catalytic activity and environmental property prediction. Future work may incorporate active learning to prioritize the computation of the most informative high-fidelity samples, or leverage more advanced graph neural networks and self-supervised pretraining to further bridge the gap between data availability and model performance, accelerating progress in chemical engineering and sustainable fuel development.

Key words: data scarcity, machine learning, delta learning, feature engineering, transfer learning, chemical property prediction, fuel mixtures
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-08-20T16:12:41Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-08-20T16:12:41Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents口試委員會審定書 i
誌謝 ii
中文摘要 iii
Abstract iv
目次 vi
圖次 viii
表次 xi
Chapter 1. Introduction 1
Chapter 2. Method 7
2.1 Datasets and data sources 7
2.2 Graph neural network models and representation of chemical systems 11
2.3 Feature engineering strategy 14
2.4 Transfer learning strategy 18
2.5 Delta learning strategy 21
Chapter 3. Results and discussion 23
3.1 Baseline and molecular feature representation performance 23
3.2 Impact of feature engineering 26
3.3 Impact of transfer learning 29
3.4 Impact of delta learning 32
3.5 Comparative efficiency of learning strategies under data scarcity 34
Chapter 4. Conclusion 41
Supporting information 43
(1) Model hyperparameter for activation energy prediction model 43
(2) Model hyperparameter for mixture property prediction models. 44
(3) Blending laws used for synthesis dataset. 46
(4) Per-Sample error comparison with baseline. 48
References 52
-
dc.language.isoen-
dc.subject資料稀缺zh_TW
dc.subject差值學習zh_TW
dc.subject燃料混合物zh_TW
dc.subject遷移學習zh_TW
dc.subject化學性質預測zh_TW
dc.subject特徵工程zh_TW
dc.subjectfuel mixturesen
dc.subjectdata scarcityen
dc.subjectmachine learningen
dc.subjectdelta learningen
dc.subjectfeature engineeringen
dc.subjecttransfer learningen
dc.subjectchemical property predictionen
dc.title提升機器學習模型在資料稀缺下預測反應活化能及混合物性質的表現zh_TW
dc.titleImproving machine learning models for activation energy and mixture property prediction under data scarcityen
dc.typeThesis-
dc.date.schoolyear113-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee林祥泰;洪英傑zh_TW
dc.contributor.oralexamcommitteeShiang-Tai Lin;Hung Ying Chiehen
dc.subject.keyword資料稀缺,差值學習,特徵工程,遷移學習,化學性質預測,燃料混合物,zh_TW
dc.subject.keyworddata scarcity,machine learning,delta learning,feature engineering,,transfer learning,chemical property prediction,fuel mixtures,en
dc.relation.page59-
dc.identifier.doi10.6342/NTU202504073-
dc.rights.note同意授權(限校園內公開)-
dc.date.accepted2025-08-14-
dc.contributor.author-college工學院-
dc.contributor.author-dept化學工程學系-
dc.date.embargo-lift2025-08-21-
顯示於系所單位:化學工程學系

文件中的檔案:
檔案 大小格式 
ntu-113-2.pdf
授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務)
5.9 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved