Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 社會科學院
  3. 經濟學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98889
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor王泓仁zh_TW
dc.contributor.advisorHung-Jen Wangen
dc.contributor.author鄭恩庭zh_TW
dc.contributor.authorEn-Ting Chengen
dc.date.accessioned2025-08-20T16:10:12Z-
dc.date.available2025-08-21-
dc.date.copyright2025-08-20-
dc.date.issued2025-
dc.date.submitted2025-08-08-
dc.identifier.citationAigner, M. et al. (1977). Formulation and estimation of stochastic frontier production function models. Journal of Econometrics, 6:21–37.
Bhat, C. R. (2001). Quasi-random maximum simulated likelihood estimation of the mixed multinomial logit model. Transportation Research Part B: Methodological, 35(7):677–693.
Caflisch, R. E. (1998). Monte carlo and quasi-monte carlo methods. Acta Numerica, 7:1–49.
Chen, Y.-Y. and Wang, H.-J. (2025). Tradeoff between efficiency and resilience: Evidence from power plants and rice farmers. Draft, Tamkang University and National Taiwan University.
Greene, W. (2003). Simulated likelihood estimation of the normal-gamma stochastic frontier function. Journal of Productivity Analysis, 19(2):179–190.
Greene, W. H. (1990). A gamma-distributed stochastic frontier model. Journal of Econometrics, 46(1):141–163.
Khatri, C. (1971). On characterization of gamma and multivariate normal distributions by solving some functional equations in vector variables. Journal of Multivariate Analysis, 1(1):70–89.
Lee, L. F. (1995). Asymptotic bias in simulated maximum-likelihood estimation of discrete-choice models. Econometric Theory, 11:437–483.
Lerman, S. and Manski, C. (1981). On the Use of Simulated Frequencies to Approximate Choice Probabilities. The MIT Press.
McFadden, D. (1989). A method of simulated moments for estimation of discrete response models without numerical integration. Econometrica, 57(5):995–1026.36
Meeusen, W. and van den Broeck, J. (1977). Efficiency estimation from cobbdouglas production functions with composed error. International Economic Review, 18(2):435–44.
Stevenson, R. E. (1980). Likelihood functions for generalized stochastic frontier estimation. Journal of Econometrics, 13(1):57–66.
Train, K. (2009). Discrete Choice Methods With Simulation, volume 2009.
Wang, H.-J. and Ho, C.-W. (2010). Estimating fixed-effect panel stochastic frontier models by model transformation. Journal of Econometrics, 157(2):286–296.
Xiang, S. and Bornemann, F. (2012). On the convergence rates of gauss and clenshaw-curtis quadrature for functions of limited regularity. SIAM Journal on Numerical Analysis, 50(5):2581–2587.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98889-
dc.description.abstract本研究提出運用數值方法 - 擬蒙地卡羅(Quasi-Monte Carlo, QMC)與高斯積分法(Gaussian Quadrature, GQ)- 來構建機率函數,並放寬隨機前緣模型中常見的分配假設。與傳統方法依賴嚴格的參數分配不同,本文所提出的方法僅需指定機率密度函數,從而在建模無效率與隨機誤差項時提供更大的彈性。我們進一步運用圖形處理器(GPU)的平行運算能力,加速模擬基礎數值方法的計算,使本方法得以擴展應用至大型資料集。模擬結果顯示,QMC 與 GQ 均能提供準確且穩定的參數估計,展現出與現有最大模擬概似估計法相媲美的可行性與效能。因此,本研究所建立的估計框架為追求更具彈性與計算效率的隨機前緣分析,提供了一種具前景的替代方案。zh_TW
dc.description.abstractThis paper proposes using numerical methods, Quasi-Monte Carlo (QMC) and Gaussian Quadrature (GQ), to construct the likelihood function and relax the commonly imposed distributional assumptions in stochastic frontier models. Unlike traditional approaches that rely on restrictive parametric distributions, the proposed methods only require the specification of the probability density functions, allowing for greater flexibility in modeling inefficiency and noise terms. We leverage the parallel processing power of Graphics Processing Units (GPUs) to accelerate the numerical computation of the simulation-based methods, making our approach scalable to large datasets. Simulation results indicate that both QMC and GQ provide accurate and reliable parameter estimates, demonstrating feasibility and competitive performance compared to existing maximum simulated likelihood estimation methods. The framework thus offers promising alternatives for researchers seeking more flexible and computationally efficient estimation strategies in stochastic frontier analysis.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-08-20T16:10:12Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-08-20T16:10:12Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents口試委員會審定書 i
摘要 ii
Abstract iii
Contents iv
List of Figures vi
List of Tables vii
1 Introduction 1
2 Literature Review 4
3 Cross Sectional SF Models 5
3.1 Maximum Simulated Likelihood Estimation (MSLE) 5
3.2 The Gaussian Quadrature Method (GQ) 7
3.3 The Quasi-Monte Carlo Method (QMC) 8
4 Cross-Sectional Simulation 9
4.1 Normal-Half Normal SF model 9
4.2 Normal-Weibull SF model 10
4.3 Normal-Rayleigh SF model 11
5 Cross-Sectional Simulation Results 12
5.1 Normal-Half Normal SF model Simulation Result 13
5.2 Normal-Weibull SF model Simulation Result 17
5.3 Normal-Rayleigh SF model Simulation Result 21
5.4 GQ Performance Comparison 25
6 Panel Data SF Models 26
7 Panel Data Simulation 28
8 Panel Data Simulation Results 28
8.1 Normal-Half Normal Panel Data SF Model Simulation Result 29
8.2 Normal-Weibull Panel Data SF Model Simulation Result 30
8.3 Normal-Rayleigh Panel Data SF Model Simulation Result 32
9 Conclusion 34
References 36
-
dc.language.isoen-
dc.subject高斯積分法zh_TW
dc.subject隨機前緣模型zh_TW
dc.subject數值方法zh_TW
dc.subject最大模擬概似估計法zh_TW
dc.subject擬蒙地卡羅法zh_TW
dc.subjectquasi-monte carloen
dc.subjectmaximum simulated likelihood estimationen
dc.subjectnumerical methodsen
dc.subjectgaussian quadratureen
dc.subjectstochastic frontier modelsen
dc.title解放隨機前緣模型之分配限制zh_TW
dc.titleRelaxing Distributional Constraints on Stochastic Frontier Modelsen
dc.typeThesis-
dc.date.schoolyear113-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee廖仁哲;盧信銘zh_TW
dc.contributor.oralexamcommitteeJen-Che Liao;Hsin-Ming Luen
dc.subject.keyword隨機前緣模型,高斯積分法,擬蒙地卡羅法,最大模擬概似估計法,數值方法,zh_TW
dc.subject.keywordstochastic frontier models,gaussian quadrature,quasi-monte carlo,maximum simulated likelihood estimation,numerical methods,en
dc.relation.page37-
dc.identifier.doi10.6342/NTU202503644-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2025-08-12-
dc.contributor.author-college社會科學院-
dc.contributor.author-dept經濟學系-
dc.date.embargo-lift2025-08-21-
顯示於系所單位:經濟學系

文件中的檔案:
檔案 大小格式 
ntu-113-2.pdf4.56 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved