請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98884完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 劉啓德 | zh_TW |
| dc.contributor.advisor | Chi-Te Liu | en |
| dc.contributor.author | 徐偉傑 | zh_TW |
| dc.contributor.author | Wei-Jie Syu | en |
| dc.date.accessioned | 2025-08-20T16:09:09Z | - |
| dc.date.available | 2025-08-21 | - |
| dc.date.copyright | 2025-08-20 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-08-10 | - |
| dc.identifier.citation | Alsiyabi, A., Brown, B., Immethun, C., Long, D., Wilkins, M., & Saha, R. (2021). Synergistic experimental and computational approach identifies novel strategies for polyhydroxybutyrate overproduction. Metabolic Engineering, 68, 1-13.
Batool, K., tuz Zahra, F., & Rehman, Y. (2017). Arsenic‐redox transformation and plant growth promotion by purple nonsulfur bacteria Rhodopseudomonas palustris CS2 and Rhodopseudomonas faecalis SS5. BioMed Research International, 2017(1), 6250327. Bhattacharyya, P. N., & Jha, D. K. (2012). Plant growth-promoting rhizobacteria (PGPR): emergence in agriculture. World Journal of Microbiology and Biotechnology, 28, 1327-1350. Brown, B., Immethun, C., Wilkins, M., & Saha, R. (2020). Rhodopseudomonas palustris CGA009 polyhydroxybutyrate production from a lignin aromatic and quantification via flow cytometry. Bioresource Technology Reports, 11, 100474. Change, I. (2006). 2006 IPCC guidelines for national greenhouse gas inventories. Institute for Global Environmental Strategies, Hayama, Kanagawa, Japan. Cowie, J. (2007). Climate change: biological and human aspects. Cambridge University Press. Domeignoz-Horta, L. A., Pold, G., Liu, X.-J. A., Frey, S. D., Melillo, J. M., & DeAngelis, K. M. (2020). Microbial diversity drives carbon use efficiency in a model soil. Nature Communications, 11(1), 3684. Fujita, Y., Witte, J. P. M., & van Bodegom, P. M. (2014). Incorporating microbial ecology concepts into global soil mineralization models to improve predictions of carbon and nitrogen fluxes. Global Biogeochemical Cycles, 28(3), 223-238. Gar’kusha, D., Fedorov, Y. A., Tambieva, N., & Mel’nikov, E. (2023). Methane emission from flooded soils of rice paddies in Rostov oblast. Eurasian Soil Science, 56(8), 995-1006. Gillenwater, M., Sussman, F., & Cohen, J. (2007). Practical policy applications of uncertainty analysis for national greenhouse gas inventories. Accounting for Climate Change: Uncertainty in Greenhouse Gas Inventories—Verification, Compliance, and Trading, 31-54. Goswami, D., Thakker, J. N., & Dhandhukia, P. C. (2016). Portraying mechanics of plant growth promoting rhizobacteria (PGPR): a review. Cogent Food & Agriculture, 2(1), 1127500. Gu, X., Weng, S., Li, Y. e., & Zhou, X. (2022). Effects of water and fertilizer management practices on methane emissions from paddy soils: Synthesis and perspective. International Journal of Environmental Research and Public Health, 19(12), 7324. Gupta, D., Bhatia, A., Kumar, A., Chakrabarti, B., Jain, N., & Pathak, H. (2015). Global warming potential of rice (Oryza sativa)-wheat (Triticum aestivum) cropping system of the Indo-Gangetic Plains. Indian J Agric Sci, 85(6), 807-816. Gutsche, J., Muślewski, Ł., Dzioba, A., & Matyukh, S. (2021). Identification and analysis of factors influencing climate change in terms of CO2 emissions. MATEC Web of Conferences, Haq, I. U., & Fixen, K. R. (2021). Complete genome sequence of Rhodopseudomonas palustris RCB100, an anoxygenic phototroph that degrades 3-Chlorobenzoate. Microbiology Resource Announcements, 10(15), 10.1128/mra. 00043-00021. Harada, N., Nishiyama, M., & Matsumoto, S. (2001). Phototrophic N2 fixation suppressed by activated sulfate reduction in anoxic rice soil slurries. Current Microbiology, 42(6), 393-397. Harada, N., Otsuka, S., Nishiyama, M., & Matsumoto, S. (2003). Characteristics of phototrophic purple bacteria isolated from a Japanese paddy soil. Soil Science and Plant Nutrition, 49(4), 521-526. Hatano, R., & Lipiec, J. (2022). Effects of land use and cultural practices on greenhouse gas fluxes in soil. Acta Agrophysica, 6(109-), 1-51. Hiraishi, A., & Kitamura, H. (1984). Distribution of phototrophic purple nonsulfur bacteria in activated sludge systems and other aquatic environments. 日本水産学会誌, 50(11), 1929-1937. Hiraishi, A., & Okamura, K. (2017). Rhodopseudomonas telluris sp. nov., a phototrophic alphaproteobacterium isolated from paddy soil. International Journal of Systematic and Evolutionary Microbiology, 67(9), 3369-3374. Hsu, S.-H., Shen, M.-W., Chen, J.-C., Lur, H.-S., & Liu, C.-T. (2021). The photosynthetic bacterium Rhodopseudomonas palustris strain PS3 exerts plant growth-promoting effects by stimulating nitrogen uptake and elevating auxin levels in expanding leaves. Frontiers in Plant Science, 12, 573634. Huang, L., Liu, X., Zhang, Z., Ye, J., Rensing, C., Zhou, S., & Nealson, K. H. (2022). Light-driven carbon dioxide reduction to methane by Methanosarcina barkeri in an electric syntrophic coculture. The ISME Journal, 16(2), 370-377. Hung, Y.-M., Lu, T.-P., Tsai, M.-H., Lai, L.-C., & Chuang, E. Y. (2021). EasyMAP: A user-friendly online platform for analyzing 16S ribosomal DNA sequencing data. New Biotechnology, 63, 37-44. Hütsch, B. W., Webster, C. P., & Powlson, D. S. (1994). Methane oxidation in soil as affected by land use, soil pH and N fertilization. Soil Biology and Biochemistry, 26(12), 1613-1622. Inglesby, A. E., Beatty, D. A., & Fisher, A. C. (2012). Rhodopseudomonas palustris purple bacteria fed Arthrospira maxima cyanobacteria: demonstration of application in microbial fuel cells. Rsc Advances, 2(11), 4829-4838. IPCC. (2023). Climate Change 2023: Synthesis Report. Contribution of Working Groups I, II and III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. IPCC, Geneva, Switzerland. Islam, S. F.-u., Sander, B. O., Quilty, J. R., De Neergaard, A., Van Groenigen, J. W., & Jensen, L. S. (2020). Mitigation of greenhouse gas emissions and reduced irrigation water use in rice production through water-saving irrigation scheduling, reduced tillage and fertiliser application strategies. Science of The Total Environment, 739, 140215. Jha, C. K., & Saraf, M. (2015). Plant growth promoting rhizobacteria (PGPR). J. Agric. Res. Dev, 5(2), 108-119. Jiménez, J. d. l. C., & Pedersen, O. (2023). Mitigation of greenhouse gas emissions from rice via manipulation of key root traits. Rice, 16(1), 24. Kantachote, D., Nunkaew, T., Kantha, T., & Chaiprapat, S. (2016). Biofertilizers from Rhodopseudomonas palustris strains to enhance rice yields and reduce methane emissions. Applied Soil Ecology, 100, 154-161. Kantha, T., Kantachote, D., & Klongdee, N. (2015). Potential of biofertilizers from selected Rhodopseudomonas palustris strains to assist rice (Oryza sativa L. subsp. indica) growth under salt stress and to reduce greenhouse gas emissions. Annals of Microbiology, 65, 2109-2118. Kaur, M., Dheri, G., Brar, A., & Kalia, A. (2024). Methane and nitrous oxide emissions in rice fields influenced with duration of cultivars and irrigation regimes. Agriculture, Ecosystems & Environment, 365, 108923. Kaymak, H. C. (2011). Potential of PGPR in agricultural innovations. Plant Growth and Health Promoting Bacteria, 45-79. Khalil, M., Rasmussen, R., Shearer, M. J., Dalluge, R., Ren, L., & Duan, C. L. (1998). Factors affecting methane emissions from rice fields. Journal of Geophysical Research: Atmospheres, 103(D19), 25219-25231. Khamis, A. K., Asli, U., Lee, C., Zailani, S., & Sarmidi, M. (2017). Reduction of soil acidity for agriculture activities in Malaysian ultisols by Rhodopseudomonas palustris. Chemical Engineering Transactions, 56, 667-672. Kumar, B. V., Ramprasad, E., Sasikala, C., & Ramana, C. V. (2013). Rhodopseudomonas pentothenatexigens sp. nov. and Rhodopseudomonas thermotolerans sp. nov., isolated from paddy soils. International Journal of Systematic and Evolutionary Microbiology, 63(Pt_1), 200-207. Kumara, K., & Hafeel, R. (2019). Effect of different soil nitrogen levels on growth, yield and grain filling rate of rice (Oryza sativa L.) elite breeding line at 08 1078 and variety at 362. Larimer, F. W., Chain, P., Hauser, L., Lamerdin, J., Malfatti, S., Do, L., Land, M. L., Pelletier, D. A., Beatty, J. T., & Lang, A. S. (2004). Complete genome sequence of the metabolically versatile photosynthetic bacterium Rhodopseudomonas palustris. Nature Biotechnology, 22(1), 55-61. Leadbeater, D. R., Oates, N. C., Bennett, J. P., Li, Y., Dowle, A. A., Taylor, J. D., Alponti, J. S., Setchfield, A. T., Alessi, A. M., & Helgason, T. (2021). Mechanistic strategies of microbial communities regulating lignocellulose deconstruction in a UK salt marsh. Microbiome, 9(1), 48. Lee, J.-H., Lee, J.-Y., Kang, Y.-G., Kim, J.-H., & Oh, T.-K. (2023). Evaluating methane emissions from rice paddies: A study on the cultivar and transplanting date. Science of The Total Environment, 902, 166174. Lee, S.-K., Lur, H.-S., & Liu, C.-T. (2021). From lab to farm: Elucidating the beneficial roles of photosynthetic bacteria in sustainable agriculture. Microorganisms, 9(12), 2453. Lee, S.-K., Lur, H.-S., Lo, K.-J., Cheng, K.-C., Chuang, C.-C., Tang, S.-J., Yang, Z.-W., & Liu, C.-T. (2016). Evaluation of the effects of different liquid inoculant formulations on the survival and plant-growth-promoting efficiency of Rhodopseudomonas palustris strain PS3. Applied Microbiology and Biotechnology, 100(18), 7977-7987. Liu, C. H., Lee, S. K., Ou, I. C., Tsai, K. J., Lee, Y., Chu, Y. H., Liao, Y. T., & Liu, C. T. (2021). Essential factors that affect bioelectricity generation by Rhodopseudomonas palustris strain PS3 in paddy soil microbial fuel cells. International Journal of Energy Research, 45(2), 2231-2244. Lo, K.-J., Lin, S.-S., Lu, C.-W., Kuo, C.-H., & Liu, C.-T. (2018). Whole-genome sequencing and comparative analysis of two plant-associated strains of Rhodopseudomonas palustris (PS3 and YSC3). Scientific Reports, 8(1), 12769. Luo, G., Kiese, R., Wolf, B., & Butterbach-Bahl, K. (2013). Effects of soil temperature and moisture on methane uptake and nitrous oxide emissions across three different ecosystem types. Biogeosciences, 10(5), 3205-3219. Luo, L., Wang, P., Wang, D., Shi, X., Zhang, J., Zhao, Z., Zeng, J., Liao, J., Zhang, Z., & Liu, Y. (2023). Rhodopseudomonas palustris PSB06 agent enhance pepper yield and regulating the rhizosphere microecological environment. Frontiers in Sustainable Food Systems, 7, 1125538. MacDonald, J. A., Skiba, U., Sheppard, L. J., Hargreaves, K. J., Smith, K. A., & Fowler, D. (1996). Soil environmental variables affecting the flux of methane from a range of forest, moorland and agricultural soils. Biogeochemistry, 34, 113-132. Mayumi, D., Yoshimoto, T., Uchiyama, H., Nomura, N., & Nakajima-Kambe, T. (2010). Seasonal change in methanotrophic diversity and populations in a rice field soil assessed by DNA-stable isotope probing and quantitative real-time PCR. Microbes and Environments, 25(3), 156-163. Mohanty, S. R., Bodelier, P. L., Floris, V., & Conrad, R. (2006). Differential effects of nitrogenous fertilizers on methane-consuming microbes in rice field and forest soils. Applied and Environmental Microbiology, 72(2), 1346-1354. Nakamura, Y., Yuki, K., Park, S.-Y., & Ohya, T. (1989). Carbohydrate metabolism in the developing endosperm of rice grains. Plant and Cell Physiology, 30(6), 833-839. Neue, H.-U. (1993). Methane emission from rice fields. Bioscience, 43(7), 466-474. Nookongbut, P., Kantachote, D., Khuong, N. Q., & Tantirungkij, M. (2020). The biocontrol potential of acid-resistant Rhodopseudomonas palustris KTSSR54 and its exopolymeric substances against rice fungal pathogens to enhance rice growth and yield. Biological Control, 150, 104354. Nookongbut, P., Kantachote, D., Megharaj, M., & Naidu, R. (2018a). Reduction in arsenic toxicity and uptake in rice (Oryza sativa L.) by As-resistant purple nonsulfur bacteria. Environmental Science and Pollution Research, 25(36), 36530-36544. Nookongbut, P., Kantachote, D., Megharaj, M., & Naidu, R. (2018b). Reduction in arsenic toxicity and uptake in rice (Oryza sativa L.) by As-resistant purple nonsulfur bacteria. Environmental Science and Pollution Research, 25, 36530-36544. Nouchi, I., Mariko, S., & Aoki, K. (1990). Mechanism of methane transport from the rhizosphere to the atmosphere through rice plants. Plant Physiology, 94(1), 59-66. Nunkaew, T., Kantachote, D., Nitoda, T., & Kanzaki, H. (2015). Selection of salt tolerant purple nonsulfur bacteria producing 5-aminolevulinic acid (ALA) and reducing methane emissions from microbial rice straw degradation. Applied Soil Ecology, 86, 113-120. Oda, Y., Samanta, S. K., Rey, F. E., Wu, L., Liu, X., Yan, T., Zhou, J., & Harwood, C. S. (2005). Functional genomic analysis of three nitrogenase isozymes in the photosynthetic bacterium Rhodopseudomonas palustris. Journal of Bacteriology, 187(22), 7784-7794. Oh, Y.-K., Seol, E.-H., Kim, M.-S., & Park, S. (2004). Photoproduction of hydrogen from acetate by a chemoheterotrophic bacterium Rhodopseudomonas palustris P4. International Journal of Hydrogen Energy, 29(11), 1115-1121. Qian, H., Zhu, X., Huang, S., Linquist, B., Kuzyakov, Y., Wassmann, R., Minamikawa, K., Martinez-Eixarch, M., Yan, X., & Zhou, F. (2023). Greenhouse gas emissions and mitigation in rice agriculture. Nature Reviews Earth & Environment, 4(10), 716-732. Rajani, B., Sunil Kumar, R., Uma Devi, M., & Nayak, J. (2016). Role of purple nonsulfur bacteria Rhodopseudomonas palustris RSOU000 and Rhodopseudomonas thermotolerance RSOU555 in waste water treatment. World J. of Pharmacy and Pharmaceutical Sci, 5(8), 1379-1387. Rani, V., Bhatia, A., & Kaushik, R. (2021). Inoculation of plant growth promoting-methane utilizing bacteria in different N-fertilizer regime influences methane emission and crop growth of flooded paddy. Science of The Total Environment, 775, 145826. Sass, R., Fisher Jr, F., Ding, A., & Huang, Y. (1999). Exchange of methane from rice fields: national, regional, and global budgets. Journal of Geophysical Research: Atmospheres, 104(D21), 26943-26951. Singh, S. (2009). Climate change and crops. Springer Science & Business Media. Stams, A. J., & Plugge, C. M. (2009). Electron transfer in syntrophic communities of anaerobic bacteria and archaea. Nature Reviews Microbiology, 7(8), 568-577. Su, Y., Shi, Q., Li, Z., Deng, H., Zhou, Q., Li, L., Zhao, L., Yuan, S., Liu, Q., & Chen, Y. (2024). Rhodopseudomonas palustris shapes bacterial community, reduces Cd bioavailability in Cd contaminated flooding paddy soil, and improves rice performance. Science of The Total Environment, 926, 171824. Syamsul Arif, M., Houwen, F., & Verstraete, W. (1996). Agricultural factors affecting methane oxidation in arable soil. Biology and Fertility of Soils, 21, 95-102. Tate, K. R. (2015). Soil methane oxidation and land-use change–from process to mitigation. Soil Biology and Biochemistry, 80, 260-272. Venkidusamy, K., & Megharaj, M. (2016). A novel electrophototrophic bacterium Rhodopseudomonas palustris strain RP2, exhibits hydrocarbonoclastic potential in anaerobic environments. Frontiers in Microbiology, 7, 1071. Wang, A. K., Kao, K.-Y., Kuo, Y.-C., & Liou, R.-M. (2024). Utilization of Phototrophic Bacteria to Enhance Carbon Sequestration in Rice Paddy. Engineering Proceedings, 74(1), 30. Wang, D., Wang, J., Su, P., Dai, J., Tan, X., Zhang, D., Liu, Y., & Cheng, F. (2022). Effects of dazomet combined with Rhodopsesudomonas palustris PSB-06 on root-knot nematode, Meloidogyne incognita infecting ginger and soil microorganisms diversity. Frontiers in Microbiology, 13, 1021445. Wang, Z., Delaune, R., Patrick Jr, W., & Masscheleyn, P. (1993). Soil redox and pH effects on methane production in a flooded rice soil. Soil Science Society of America Journal, 57(2), 382-385. Watanabe, T., Kimura, M., & Asakawa, S. (2010). Diversity of methanogenic archaeal communities in Japanese paddy field ecosystem, estimated by denaturing gradient gel electrophoresis. Biology and Fertility of Soils, 46, 343-353. Wiedmann, T., & Minx, J. (2008). A definition of ‘carbon footprint’. Ecological Economics Research Trends, 1(2008), 1-11. Wong, W.-T., Tseng, C.-H., Hsu, S.-H., Lur, H.-S., Mo, C.-W., Huang, C.-N., Hsu, S.-C., Lee, K.-T., & Liu, C.-T. (2014). Promoting effects of a single Rhodopseudomonas palustris inoculant on plant growth by Brassica rapa chinensis under low fertilizer input. Microbes and Environments, 29(3), 303-313. Yamane, I., & Sato, K. (1964). Decomposition of glucose and gas formation in flooded soil. Soil Science and Plant Nutrition, 10(3), 35-41. Yang, S.-S., & Chang, H.-L. (2001). Methane emission from paddy fields in Taiwan. Biology and Fertility of Soils, 33(2), 157-165. Yang, S.-S., Liu, C.-M., Lai, C.-M., & Liu, Y.-L. (2003). Estimation of methane and nitrous oxide emission from paddy fields and uplands during 1990–2000 in Taiwan. Chemosphere, 52(8), 1295-1305. Ye, L. F., Liu, H. Y., Deng, H. D., Zheng, Y. P., Han, Y. W., Gao, X. T., Abbott, L. K., Zhao, C. M., & Li, J. H. (2023). Effects of decadal nitrogen and phosphorus fertilization on microbial taxonomic and functional attributes associated with soil organic carbon decomposition and concentration in an alpine meadow. Ecological Indicators, 146, 109790. Zhang, N., Zhu, Y., Xiao, X., & Zhao, Y. (2022). Effects of co-inoculation of Rhodopseudomonas palustris and Bacillus subtilis on the diversity and function of soil bacteria in rice root zone. Journal of Plant Nutrition and Fertilizers, 28(1), 58-71. 動植物防疫檢疫署。2024。化學農藥風險十年減半行動方案。農業部。 國家永續發展委員會。2022。臺灣2050淨零排放路徑及策略總說明。行政院環保署。 環境部。2025。中華民國國家溫室氣體排放清冊報告。臺北:環境部。 | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98884 | - |
| dc.description.abstract | 水稻栽培為臺灣農業部門中主要的溫室氣體排放源之一。本研究旨在探討本土光合菌Rhodopseudomonas palustris PS3菌株對水稻生長促進以及田間甲烷排放抑制之效果與作用機制。本研究包括三階段試驗,首先進行光合菌PS3菌株與產甲烷菌Methanosarcina barkeri、Methanobacterium spp.的純土壤試驗初步評估PS3菌株在淹水土壤中的甲烷減排潛力,其次於臺灣北部兩處水稻田進行土壤與作物栽培試驗評估其實際應用效果,最後以PS3菌株與產甲烷菌的共培養試驗探討兩微生物間的交互作用情形。研究結果顯示,PS3菌株在純土壤與田間試驗皆可有效降低36-82%的土壤甲烷通量,並於水稻收穫期顯著提升稔實率(34%)與穀粒千粒重(20%)。以穩定碳同位素分析確認PS3菌株並未直接以甲烷作為代謝基質,其抑制甲烷排放效應可能歸因於提升甲烷氧化菌群 (Methylomonas) 活性或是與產甲烷菌競爭醋酸等共同代謝基質所致。在厭氧避光的培養條件下,PS3菌株可能透過氫氣移轉來促進M. barkeri的甲烷生成作用;而在厭氧照光條件下,PS3菌株呈現明顯固碳效益,並大量合成光合色素,抑制高達77%的甲烷累積排放量。本試驗證實PS3菌株在多種環境皆展現穩定的甲烷抑制效果,能有效提升田間稻作產量,同時發現其與土壤中產甲烷菌群間具高度交互作用,為糧食安全與環境永續提供具高度開發潛力之新型栽培技術。 | zh_TW |
| dc.description.abstract | Methane emissions from rice paddies represent a major source of agricultural greenhouse gases. This study examines the potential of Rhodopseudomonas palustris PS3 as a biological agent for mitigating methane emissions while enhancing rice yield. Bulk soil tests, field trials, and co-culture experiments with the methanogen Methanosarcina barkeri were conducted to elucidate PS3’s function. The application of PS3 in bulk soil and rice fields resulted in a 36–82% reduction in CH₄ flux, along with a 34% increase in the filled-spikelet rate and a 20% increase in thousand-grain weight. Stable isotope tracing studies indicated that PS3 does not directly metabolize methane; its ability to reduce emissions is likely attributed to substrate competition or the stimulation of methane-oxidizing bacteria, such as Methylomonas. Under anaerobic-dark conditions, PS3 facilitated methane production through hydrogen transfer to M. barkeri, whereas under anaerobic-illuminated conditions, mimicking surface paddy soils, PS3 activated photoautotrophic metabolism, fixed carbon, and suppressed methane emissions by up to 77%. These findings underscore the dual functionality of PS3 as a methane mitigation agent and yield enhancer, offering a promising microbe-based strategy for sustainable rice cultivation. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-08-20T16:09:09Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-08-20T16:09:09Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | Acknowledgements ii
中文摘要 iii Abstract iv Content v Lists of Figures vii Lists of Tables ix Introduction 1 Research Scope and Rationale 1 Microbial and environmental determinants of methane emissions in paddy soil 3 Innovative cultivation technologies in rice agriculture 6 The utilization of potential strains of photosynthetic bacteria 7 Research objectives, hypotheses, and principal findings 10 Materials and Methods 14 Microbial strains and cultivation conditions 14 Soil sampling and physicochemical analysis 14 Soil microbial community analysis 15 Soil CH₄ reduction potential test 16 Field trial design and treatment 19 Anaerobic bottle incubation experiments 21 Statistical analysis 22 Results and Discussions 23 Soil properties comparison from different rice paddy site 23 Effect of chemical fertilizers on soil methane emissions 25 Effect of PS3 inoculation on soil methane emissions 28 Influence of PS3 on soil microbial composition and methane oxidation pathways 31 Effect of PS3 inoculation on rice yield promotion 35 Effect of PS3 inoculation on reducing GWP in rice field 40 Sustained GWP reduction by PS3 during the heading stage and underlying methane mitigation mechanisms 43 Design basis for co-culture of PS3 and M. barkeri 46 Microbial metabolic activities under anaerobic and light-shielded conditions 50 Microbial metabolic activity under anaerobic-light condition 55 Limitations 60 Conclusions 61 References 64 | - |
| dc.language.iso | en | - |
| dc.subject | 產甲烷菌Methanosarcina barkeri | zh_TW |
| dc.subject | 甲烷減量 | zh_TW |
| dc.subject | 微生物共培養系統 | zh_TW |
| dc.subject | 稻田土壤 | zh_TW |
| dc.subject | 光合菌Rhodopseudomonas palustris | zh_TW |
| dc.subject | Rhodopseudomonas palustris | en |
| dc.subject | microbial co-culture system | en |
| dc.subject | Methanosarcina barkeri | en |
| dc.subject | methane mitigation | en |
| dc.subject | rice paddy soil | en |
| dc.title | 本土光合細菌PS3於水稻生長促進與溫室氣體減排效應之研究 | zh_TW |
| dc.title | Study on the effects of indigenous photosynthetic bacterium PS3 on rice growth promotion and greenhouse gas mitigation | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 許正一;王尚禮;蕭友晉;李淑君 | zh_TW |
| dc.contributor.oralexamcommittee | Zeng-Yei Hseu;Shan-Li Wang;Yo-Jin Shiau;Sook-Kuan Lee | en |
| dc.subject.keyword | 稻田土壤,甲烷減量,光合菌Rhodopseudomonas palustris,產甲烷菌Methanosarcina barkeri,微生物共培養系統, | zh_TW |
| dc.subject.keyword | rice paddy soil,methane mitigation,Rhodopseudomonas palustris,Methanosarcina barkeri,microbial co-culture system, | en |
| dc.relation.page | 77 | - |
| dc.identifier.doi | 10.6342/NTU202504362 | - |
| dc.rights.note | 未授權 | - |
| dc.date.accepted | 2025-08-14 | - |
| dc.contributor.author-college | 生物資源暨農學院 | - |
| dc.contributor.author-dept | 生物科技研究所 | - |
| dc.date.embargo-lift | N/A | - |
| 顯示於系所單位: | 生物科技研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-2.pdf 未授權公開取用 | 1.56 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
