請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98881完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 趙修武 | zh_TW |
| dc.contributor.advisor | Shiu-Wu Chau | en |
| dc.contributor.author | 蕭琮祐 | zh_TW |
| dc.contributor.author | Tsung-Yu Hsiao | en |
| dc.date.accessioned | 2025-08-20T16:08:27Z | - |
| dc.date.available | 2025-08-21 | - |
| dc.date.copyright | 2025-08-20 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-08-12 | - |
| dc.identifier.citation | “Global Offshore Wind Report 2024”, GWEC, 2024.
Global Wind Energy Council and Ocean Renewable Energy Action Coalition, “Offshore wind technical potential in Taiwan,” Brussels, Belgium, Jun. 2021. W. J. M. Rankine, “On the mechanical principles of the action of propellers,” Trans. Inst. Naval Architects, vol. 6, 1865. R. E. Froude, “On the part played in propulsion by differences of fluid pressure,” Trans. Inst. Naval Architects, vol. 30, pp. 390, 1889. K. C. Lee, “A wake model for wind turbine power prediction,” M.S. thesis, Dept. of Engineering Science and Ocean Engineering, National Taiwan University, 2018. Y. C. Chiang, “Wind farm power prediction via actuator disk model,” M.S. thesis, Dept. of Engineering Science and Ocean Engineering, National Taiwan University, 2019. Y. C. Hsu, “Wind farm wake prediction via a large eddy simulation approach,” M.S. thesis, Dept. of Engineering Science and Ocean Engineering, National Taiwan University, 2021. W. H. Pan, “Study on wake interaction among wind farms of Zhangbin offshore area via RANS approach coupled with actuator disk model,” M.S. thesis, Dept. of Engineering Science and Ocean Engineering, National Taiwan University, 2022. D. A. L. Gurau, "Application of Symmetry-Preserving Discretization to Wind Turbine Flow Simulation," M.S. thesis, Dept. of Engineering Science and Ocean Engineering, College of Engineering, National Taiwan University, 2023. H. D. Nedjari, O. Guerri, and M. Saighi, “Full rotor modelling and generalized actuator disc for wind turbine wake investigation,” Energy Reports, vol. 6, pp. 232-255, 2020. A. Rezaeiha and D. Micallef, “Wake interactions of two tandem floating offshore wind turbines: CFD analysis using actuator disc model,” Renewable Energy, vol. 179, pp. 859-876, 2021. I. Neunaber, M. Hölling, J. Whale, and J. Peinke, “Comparison of the turbulence in the wakes of an actuator disc and a model wind turbine by higher order statistics: A wind tunnel study,” Renewable Energy, vol. 179, pp. 1650-1662, 2021. G. Dong, Z. Li, J. Qin, and X. Yang, “Predictive capability of actuator disk models for wakes of different wind turbine designs,” Renewable Energy, vol. 188, pp. 269-281, 2022. H. Meng, T. Chen, X. Chen, M. Ge, Y. Han, and Y. Liu, “Simplified Polynomial-asymptotic-distribution Actuator Disc (SPAD) method for wind turbine wake simulation based on k-ε-fₚ turbulence model,” Renewable Energy, vol. 236, Art. no. 121479, 2024. R. Kyle, Y. C. Lee, and W.-G. Früh, “Propeller and vortex ring state for floating offshore wind turbines during surge,” Renewable Energy, vol. 155, pp. 645–657, 2020. Q. Sun, G. Li, L. Duan, and Z. He, “The coupling of tower-shadow effect and surge motion intensifies aerodynamic load variability in downwind floating offshore wind turbines,” Energy, vol. 282, Art. no. 128788, 2023. K. Wang, M. Zhao, S. Chen, and R. Zha, “Aerodynamic performance analysis of a floating wind turbine with coupled blade rotation and surge motion,” Engineering Applications of Computational Fluid Mechanics, vol. 18, no. 1, Art. no. 2301524, 2024. Y. Fang, L. Duan, Z. Han, Y. Zhao, and H. Yang, “Numerical analysis of aerodynamic performance of a floating offshore wind turbine under pitch motion,” Energy, vol. 192, Art. no. 116621, 2020. W. Shi, J. Jiang, K. Sun, and Q. Ju, “Aerodynamic performance of semi-submersible floating wind turbine under pitch motion,” Sustainable Energy Technologies and Assessments, vol. 48, Art. no. 101556, 2021. S. Fu, Z. Li, W. Zhu, X. Han, X. Liang, H. Yang, and W. Shen, “Study on aerodynamic performance and wake characteristics of a floating offshore wind turbine under pitch motion,” Renewable Energy, vol. 205, pp. 317-325, 2023. L. Lin, K. Wang, and D. Vassalos, “Detecting wake performance of floating offshore wind turbine,” Ocean Engineering, vol. 156, pp. 263-276, 2018. Z. Chen, X. Wang, Y. Guo, and S. Kang, “Numerical analysis of unsteady aerodynamic performance of floating offshore wind turbine under platform surge and pitch motions,” Renewable Energy, vol. 163, pp. 1849-1870, 2021. A. Arabgolarcheh, S. Jannesarahmadi, and E. Benini, “Modeling of near wake characteristics in floating offshore wind turbines using an actuator line method,” Renewable Energy, vol. 185, pp. 871-887, 2022. F. R. Menter, "Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications," AIAA Journal, vol. 32, no. 8, pp. 1598-1605, 1994. Y. T. Wu and F. "Port" "e" ́-Agel, “Modeling Turbine Wakes and Power Losses within a Wind Farm Using LES: An Application to the Horns Rev Offshore Wind Farm,” Renewable Energy, vol. 75, pp. 945-955, 2015. Simcenter STAR-CCM+ User Guide, ver. 2410, Siemens, Berlin, Germany, 2023. Y. C. Chiang, Y. C. Hsu and S. W. Chau, “Power Prediction of Wind Farms via a Simplified Actuator Disk Model,” Journal of Marine Science and Engineering, vol. 8, Art. No. 610, 2020. R. J. Barthelmie, K. Hansen, S. T. Frandsen, O. Rathmann, J. G. Schepers, W. Schlez, J. Phillips, K. Rados, A. Zervos, E. S. Politis, and P. K. Chaviaropoulos. “Modeling and Measuring Flow and Wind Turbine Wakes in Large Wind Farms Offshore,” Wind Energy, vol. 12, no. 5, pp. 431-444, 2009. A. Subbulakshmi, M. Verma, M. Keerthana, S. Sasmal, P. Harikrishna and S. Kapuria, “Recent advances in experimental and numerical methods for dynamic analysis of floating offshore wind turbines-An integrated review,” Renewable and Sustainable Energy Reviews, vol. 164, p. 112525, 2022. DNV GL, Coupled Analysis of Floating Wind Turbines, DNVGL-RP-0286, 2019. M. Ikhennicheu, M. Lynch, S. Doole, F. Borisade, D. Matha, J. L. Dominguez, R. D. Vicente, T. Habekost, L.Ramirez, S. Potestio, C. Molins and P. Trubat, Review of the State of the Art of Mooring and Anchoring Designs, Technical Challenges and Identification of Relevant DLCs, Corewind Project, 2020. T. Ishihara and S. Zhang, “Prediction of dynamic response of semi-submersible floating offshore wind turbine using augmented Morison's equation with frequency dependent hydrodynamic coefficients,” Renewable Energy, vol. 131, pp. 1186-1207, 2019. H. Y. Tong, T. Y. Lin and S. W. Chau, “Normal operating performance study of 15 MW floating wind turbine system using semisubmersible Taida floating platform in Hsinchu offshore area,” Journal of Marine Science and Engineering, vol. 11, no. 2, Art. no. 457, 2023. T. S. Lin, H. Y. Tong, S. K. Wong and S. W. Chau, “Influence of surging and pitching behaviors on the power output and wake characteristics of a 15 MW floating wind turbine,” Journal of Marine Science and Engineering, vol. 13, no. 6, Art. no. 1059, 2025. H. Li, Y. Zhang, and L. Chen, “Wake dynamics of a floating wind turbine under surge motion,” Renewable Energy, vol. 170, pp. 498-513, 2021. S. Guntur, A. R. Natarajan, and P. E. Réthoré, “An investigation into the effects of floating platform motion on wind turbine wake dynamics using LES,” Wind Energy Science, vol. 3, pp. 627-641, 2018. A. Cioni, R. Bayati, A. Robertson, K. Dykes, and J. Jonkman, “OC6 Phase III: Validation of floating offshore wind modelling in a coupled simulation framework using data from the DeepCwind floating semisubmersible wind turbine test campaign,” Wind Energy Science, vol. 8, pp. 1659-1688, 2023. J. Frederik, M. van Dooren, P. Chamorro, and J. Meyers, “Helix: breaking the rotational symmetry of wake turbulence,” Wind Energy Science, vol. 5, pp. 1217-1233, 2020. R. Abraham, A. Petros, and C. Meneveau, “Response characteristics of wind turbine wakes to time-varying pitch control,” Renewable Energy, vol. 172, pp. 1033-1043, 2021. Z. Zhao, D. Liu, Y. Zhu, and W. Liu, “Study on the near wake aerodynamic characteristics of floating offshore wind turbine under combined surge and pitch motion,” Energy Reports, vol. 8, pp. 17083-17094, 2022. J. Bartl and C. S. Sætran, “Experimental measurements of wake deflection by static yaw misalignment of a model wind turbine,” Wind Energy Science, vol. 3, no. 1, pp. 329-337, 2018. M. F. Howland, L. M. Dabiri, and J. O. Dabiri, “Wind farm power optimization through wake steering using adjoint-based methods,” arXiv preprint, arXiv:1603.06632, 2016. D. Medici and P. H. Alfredsson, “Measurements on a wind turbine wake: 3D effects and bluff body vortex shedding,” Wind Energy, vol. 9, no. 3, pp. 219-236, 2006. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98881 | - |
| dc.description.abstract | 本研究以數值方法探討 Vestas V80 浮式風機之跡流行為,採用 STAR-CCM+ 軟體求解三維暫態連續方程與動量方程,並結合 SST k-ω紊流模型與制動盤模型,模擬風機進行六自由度運動時轉子周圍及下游的流場特性。研究中比較固定式與浮式風機,模擬條件涵蓋風速 9 m/s、15 m/s 及 21 m/s,平移運動振幅為 0.5 至 2.5 公尺,旋轉運動振幅為 1° 至 5°,運動週期則介於 40 至 50 秒。分析結果顯示,根據標準化時間平均風速差異,縱搖與平擺運動會在距離風機下游引發強烈擾動,促進跡流混合並加速風速恢復;而其標準差分析則顯示,橫搖與橫移運動應予以抑制,以減輕下游風機的疲勞損傷。在高風速條件下,流場慣性與穩定性顯著削弱平台運動對跡流的影響。在所分析的各項參數中,風速與運動振幅為影響下游跡流行為的主要因素,而運動週期的影響相對較小。此外,浮式風機的六自由度運動有助於提高跡流的風速恢復效果,進而縮短風機間距、提升單位面積發電效率。雖然平台運動可能降低自身風機的功率輸出,但能改善下游風機的發電性能。浮式風機的運動振幅、下游距離與標準化時間平均風速差異三者之間的關係可以透過二次多項式充分描述。 | zh_TW |
| dc.description.abstract | This study investigates the wake behavior of the Vestas V80 floating offshore wind turbine (FOWT) using numerical methods. The simulations were conducted with STAR-CCM+ by solving the three-dimensional unsteady continuity and momentum equations, coupled with the SST k-ω turbulence model. An actuator disk model was employed to simulate the flow field under six degrees of freedom platform motions. Both fixed-bottom and floating turbine configurations are examined under wind speeds of 9 m/s, 15 m/s, and 21 m/s. The motion amplitudes considered include translational motions ranging from 0.5 m to 2.5 m and rotational motions from 1° to 5°, with motion periods between 40 and 50 s. Based on the analysis of difference in normalized time-average velocity, pitch and yaw motions were found to induce strong downstream disturbances, enhancing wake mixing and wind speed recovery, whereas the analysis of its standard deviation suggests that sway and roll motions should be minimized to mitigate fatigue damage in downstream turbines. At higher wind speeds, the increased flow inertia and stability significantly suppress the wake effects induced by platform motions. Among the parameters examined, wind speed and motion amplitude were identified as the primary factors influencing the downstream wake, whereas the effect of motion period was relatively minor. Furthermore, the motions of the FOWT were found to enhance wake recovery, thereby potentially enabling reduced inter-turbine spacing and improving power generation efficiency per unit area. Although platform motions may decrease the power output of the turbine itself, they can enhance the performance of downstream turbines. Finally, the relationship among motion amplitude, downstream distance, and normalized time-average velocity can be well described by a quadratic polynomial. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-08-20T16:08:27Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-08-20T16:08:27Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | Abstract I
摘要 II Content III Nomenclature IV List of Figures VIII List of Tables XI 1 Introduction 1 1.1 Motivation 1 1.2 Literature Review 4 2 Numerical Methods 7 2.1 Governing Equation 8 2.2 Turbulence Model 9 2.3 Actuator Disk Model 14 2.4 Numerical Framework 18 2.5 Computational Domain and Boundary Conditions 20 2.6 Mesh Distribution 22 2.7 Time Step and Grid Dependency 23 3 Validation 28 3.1 Case Description 28 3.2 Power Prediction 30 4 Design Requirements 38 5 Simulation Results 40 5.1 Translational Motions 43 5.1.1 Surging Behavior 45 5.1.2 Swaying Behavior 57 5.1.3 Heaving Behavior 69 5.1.4 Summary 75 5.2 Rotational Motions 81 5.2.1 Rolling Behavior 83 5.2.2 Pitching Behavior 89 5.2.3 Yawing Behavior 96 5.2.4 Summary 102 6 Fitting Analysis 105 7 Conclusion 118 8 Future Work 120 References 121 Appendix 124 | - |
| dc.language.iso | en | - |
| dc.subject | 風機跡流 | zh_TW |
| dc.subject | 浮式風機 | zh_TW |
| dc.subject | 制動盤模型 | zh_TW |
| dc.subject | 六自由度運動 | zh_TW |
| dc.subject | 風速恢復 | zh_TW |
| dc.subject | 發電功率 | zh_TW |
| dc.subject | 二次多項式擬合 | zh_TW |
| dc.subject | Floating Offshore Wind Turbine | en |
| dc.subject | Quadratic Polynomial Fitting | en |
| dc.subject | Power Output | en |
| dc.subject | Wind Speed Recovery | en |
| dc.subject | 6DOF Motion | en |
| dc.subject | Actuator Disk Model | en |
| dc.subject | Wind Turbine Wake | en |
| dc.title | 浮式風機跡流行為之數值研究 | zh_TW |
| dc.title | Numerical Study on Wake Behavior of a Floating Wind Turbine | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 江茂雄;蔡英聖;楊瑞源;羅光閔;盧南佑 | zh_TW |
| dc.contributor.oralexamcommittee | Mao-Hsiung Chiang;Ing-Sheng Tsay;Ray-Yeng Yang;Guang-Min Luo;Nan-You Lu | en |
| dc.subject.keyword | 風機跡流,浮式風機,制動盤模型,六自由度運動,風速恢復,發電功率,二次多項式擬合, | zh_TW |
| dc.subject.keyword | Wind Turbine Wake,Floating Offshore Wind Turbine,Actuator Disk Model,6DOF Motion,Wind Speed Recovery,Power Output,Quadratic Polynomial Fitting, | en |
| dc.relation.page | 164 | - |
| dc.identifier.doi | 10.6342/NTU202503576 | - |
| dc.rights.note | 未授權 | - |
| dc.date.accepted | 2025-08-14 | - |
| dc.contributor.author-college | 工學院 | - |
| dc.contributor.author-dept | 工程科學及海洋工程學系 | - |
| dc.date.embargo-lift | N/A | - |
| 顯示於系所單位: | 工程科學及海洋工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-2.pdf 未授權公開取用 | 36.43 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
