Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 海洋研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98878
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor張明輝zh_TW
dc.contributor.advisorMing-Huei Changen
dc.contributor.author蘇煜鈞zh_TW
dc.contributor.authorYu-Chun Suen
dc.date.accessioned2025-08-20T16:07:48Z-
dc.date.available2025-08-21-
dc.date.copyright2025-08-20-
dc.date.issued2025-
dc.date.submitted2025-08-12-
dc.identifier.citationCaruso, M. J., Metzger, E. J., & Metzger, E. P. (2006). Interannual variability of the Kuroshio intrusion in the South China Sea. Journal of Oceanography, 62(4), 559–575.
Centurioni, L. R., Niiler, P. P., & Lee, D. K. (2004). Observations of inflow of Philippine Sea surface water into the South China Sea through the Luzon Strait. Journal of Physical Oceanography, 34(1), 113-121.
Chelton, D. B., Schlax, M. G., Samelson, R. M., & de Szoeke, R. A. (2007). Global observations of large oceanic eddies. Geophysical Research Letters, 34(15).
Cushman-Roisin, B., & Beckers, J. M. (2011). Introduction to geophysical fluid dynamics: physical and numerical aspects (Vol. 101). Academic press.
Farris, A., Wimbush, M. (1996). Wind-induced Kuroshio intrusion into the South China Sea. J Oceanogr 52, 771–784.
Isern-Fontanet, J., García-Ladona, E., & Font, J. (2003). Identification of marine eddies from altimetric maps. Journal of Atmospheric and Oceanic Technology, 20(5), 772-778.
Jan, S., Mensah, V., Andres, M., Chang, M.-H., & Yang, Y. J. (2017). Eddy‐Kuroshio interactions: Local and remote effects. Journal of Geophysical Research: Oceans, 122(12), 9744-9764.
Jia, Y., & Liu, Q. (2004). Eddy shedding from the Kuroshio bend at Luzon Strait. Journal of Oceanography, 60, 1063-1069.
Li, L., Nowlin Jr, W. D., & Jilan, S. (1998). Anticyclonic rings from the Kuroshio in the South China Sea. Deep Sea Research Part I: Oceanographic Research Papers, 45(9), 1469-1482.
Lin, J. Y., Zheng, Z. W., Zheng, Q., Wu, D. R., Gopalakrishnan, G., Ho, C. R., ... & Xie, L. L. (2022). Satellite observed new mechanism of Kuroshio intrusion into the northern South China Sea. International Journal of Applied Earth Observation and Geoinformation, 115, 103119.
Nan, F., Xue, H., Chai, F., Shi, L., Shi, M., & Guo, P. (2011a). Identification of different types of Kuroshio intrusion into the South China Sea. Ocean Dynamics, 61, 1291-1304.
Nan, F., Xue, H., Xiu, P., Chai, F., Shi, M., & Guo, P. (2011b). Oceanic eddy formation and propagation southwest of Taiwan. Journal of Geophysical Research: Oceans, 116(C12).
Qiu, B., & Chen, S. (2010). Interannual-to-decadal variability in the bifurcation of the North Equatorial Current off the Philippines. Journal of Physical Oceanography, 40(11), 2525-2538.
Reichl, B. G., Adcroft, A., Griffies, S. M., & Hallberg, R. (2022). A potential energy analysis of ocean surface mixed layers. Journal of Geophysical Research: Oceans, 127(7), e2021JC018140.
Sun, Z., Hu, J., Chen, Z., Zhu, J., Yang, L., Chen, X., & Wu, X. (2021). A Strong Kuroshio Intrusion into the South China Sea and Its Accompanying Cold-Core Anticyclonic Eddy in Winter 2020–2021. Remote Sensing, 13(14), 2645.
Sun, Z., Zhang, Z., Qiu, B., Zhang, X., Zhou, C., Huang, X., Zhao, W., & Tian, J. (2020). Three-Dimensional Structure and Interannual Variability of the Kuroshio Loop Current in the Northeastern South China Sea. Journal of Physical Oceanography, 50(9), 2437-2455.
Wang, G., Su, J., & Chu, P. C. (2003). Mesoscale eddies in the South China Sea observed with altimeter data. Geophysical Research Letters, 30(21).
Wang, J., and C.-S. Chern (1987), The warm-core eddy in the northern South China Sea, I. Preliminary observations on the warm-core eddy [in Chinese with English abstract], Acta Oceanogr. Taiwan, 18, 92–103.
Wang, L., Koblinsky, C. J., & Howden, S. (2000). Mesoscale variability in the South China Sea from the TOPEX/Poseidon altimetry data. Deep Sea Research Part I: Oceanographic Research Papers, 47(4), 681-708.
Wu, C.-R., & Hsin, Y.-C. (2012). The forcing mechanism leading to the Kuroshio intrusion into the South China Sea. Journal of Geophysical Research: Oceans, 117(C7).
Zhang, Z., Zhao, W., Qiu, B., & Tian, J. (2017). Anticyclonic eddy sheddings from Kuroshio loop and the accompanying cyclonic eddy in the northeastern South China Sea. Journal of Physical Oceanography, 47(6), 1243-1259.
Zu, T., Wang, D., Yan, C., Belkin, I., Zhuang, W., & Chen, J. (2013). Evolution of an anticyclonic eddy southwest of Taiwan. Ocean Dynamics, 63, 519-531.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98878-
dc.description.abstract過去的研究指出黑潮受東北季風與來自北太平洋內部的中尺度渦旋等影響,有機會進入南海北部,於臺灣西南外海形成套流,此套流可進一步剝離形成反氣旋式渦旋,本研究運用24年(2000–2023)的衛星高度計資料重新探討此一現象。夏季平均資料顯示黑潮蜿蜒進呂宋海峽,經南海邊緣流回到臺灣東岸外海;冬季平均資料顯示,黑潮進入南海形成套流與渦旋的複合結構,約盤據在臺灣西南外海200 × 200 km的區間,此區間內的平均相對渦度(ζ)時間序列顯示:套流/渦旋事件(ζ=0.3f-0.4f)主要發生在每年11月至隔年3月,且在近10年渦度有增強趨勢。通過時序列觀察發現,共發生 26 次渦旋事件,其中 12 次由季風驅動,3 次與西北太平洋渦旋撞擊黑潮有關,另有 11 次為季風與西北太平洋渦旋共同作用的結果。經由絕對動力高度之複數經驗正交函數分析結果指出,Mode-1 (30.5%) 代表選取區域的季節性變化,Mode-2 (25.7%) 代表黑潮擺動與套流的形成,Mode-3 (11.5%) 為反氣旋式渦旋的剝離與向西南行進。渦旋的發展與風場變化有關,本研究比較風應力(τ)、風速(U_10)分別與渦旋渦度(∣ζ/f∣)、面積(A)與環量(|ζ/f | A)之間的統計關聯性。結果顯示,風應力與三者之相關係數分別為 0.52、0.48 與 0.56,正相關不明顯;將風應力與渦度進行時間積分後,相關性可微幅提升至 0.64,顯示風場累積作用較能對應渦旋的發展歷程。風速的統計相關性較風應力明顯高,其分別與面積與環量相關性達 0.93 與 0.90。為瞭解渦旋的一般特性,本研究自 26 個事件中以 Okubo–Weiss 參數篩選出 10 個具有良好對稱形狀的渦旋作為觀察案例,結果顯示平均生存期約為 200 – 350 天,其中發展期約占 20%、成熟期約 30%、行進期則達 50%;最大渦旋動能可達 0.3 m² s⁻²,平均直徑與振幅分別約 200 km與 0.15 m。生存期、振幅、直徑均不及西北太平洋渦旋,但渦旋動能僅略小於大洋渦旋。zh_TW
dc.description.abstractPrevious studies have indicated that the Kuroshio Current, influenced by the northeast monsoon and mesoscale eddies from the North Pacific interior, can intrude into the northern South China Sea (SCS) through the Luzon Strait and form a loop current southwest of Taiwan. This loop current may eventually shed into an anticyclonic eddy (AE). In this study, we revisit this phenomenon using 24 years (2000–2023) of satellite altimetry data. The summer climatology reveals a meandering Kuroshio entering the Luzon Strait and recirculating along the SCS western boundary before returning to the east of Taiwan. In contrast, the winter climatology shows a more developed loop current and AE structure extending into the northern SCS, typically centered in a 200 × 200 km area off southwestern Taiwan. The time series of area-averaged relative vorticity (ζ ) within this region indicates that loop current/eddy events (ζ = 0.3f–0.4f) predominantly occur between November and March, with a notable increase in frequency over the past decade. Based on time series analysis, 26 eddy events were identified: 12 driven by monsoonal forcing, 3 triggered by impinging Pacific cyclonic eddies, and 11 resulting from a combined mechanism. Complex Empirical Orthogonal Function (CEOF) analysis of Absolute Dynamic Topography (ADT) reveals three dominant modes: Mode-1 (30.5%) represents seasonal variation in the study area; Mode-2 (25.7%) corresponds to Kuroshio meandering and loop current formation; and Mode-3 (11.5%) describes the detachment and southwestward propagation of AEs. The development of these AEs is closely associated with surface wind forcing. Statistical analyses were conducted to evaluate the relationship between wind stress (τ), wind speed (U₁₀), and eddy properties including normalized relative vorticity (|ζ/f|), eddy area (A), and circulation strength (|ζ/f|  A). Correlation coefficients between τ and the three eddy metrics were 0.52, 0.48, and 0.56, respectively—suggesting weak positive correlations. However, integrating τ and ζ over time improved the correlation (R = 0.64), implying that cumulative wind forcing better reflects the eddy growth process. Wind speed showed significantly stronger correlations, particularly with eddy area (R = 0.93) and circulation strength (R = 0.90), suggesting that wind speed may play a primary role in controlling horizontal eddy size.

To characterize general eddy features, 10 well-formed and symmetrical AEs were selected based on the Okubo–Weiss parameter. The results show an average lifespan of 200–350 days, with growth, maturity, and propagation phases accounting for approximately 20%, 30%, and 50% of their lifecycles, respectively. The maximum eddy kinetic energy reached 0.3 m² s⁻², with average diameter and amplitude of approximately 200 km and 0.15 m. While their lifespan, amplitude, and size are smaller than those of typical open-ocean eddies in the northwest Pacific, the kinetic energy of these coastal AEs is only slightly lower, indicating robust eddy activity under the influence of regional forcing.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-08-20T16:07:48Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-08-20T16:07:48Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents誌謝 I
摘要 II
ABSTRACT III
目次 V
圖次 VIII
表次 XII
第一章、背景介紹 1
1.1 南海背景簡介 1
1.2 黑潮進入南海的型態以及可能形成原因 2
1.3 臺灣西南海域反氣旋式渦旋的形成原因 6
1.4 研究動機 8
第二章、研究資料和方法 9
2.1 研究資料 9
2.1.1 AVISO衛星高度計資料 9
2.1.2 AVISO 中尺度渦旋軌跡數據集(META) 10
2.1.3 ECMWF再分析風場資料 ERA5 10
2.2 研究方法 11
2.2.2各項參數的計算 12
2.2.3 複數型經驗正交函數分析 14
第三章、臺灣西南外海反氣旋式渦旋之時空變異特徵 16
3.1 夏季、冬季長期氣候平均資料 16
3.2 渦旋長期變化與背景場關聯性 17
3.3 長期海表高度之複數型經驗正交函數分析 21
3.3.1 季節模態、套流/渦旋模態和渦旋行進模態的振幅場分析 21
3.3.2 季節模態、套流/渦旋模態和渦旋行進模態的相位場分析 22
3.3.3 小結 23
第四章、反氣旋式渦旋事件之特性與動力機制分析 27
4.1 渦旋事件發展時序列與風場對應分析 27
4.1.1 風場所主導的渦旋事件:2019-2020年案例 27
4.1.2 西北太平洋渦旋撞擊黑潮誘發的渦旋事件:2004年案例 29
4.1.3 風場與西北太平洋渦旋共同作用下的渦旋事件:2022-2023年案例 31
4.1.4 小結 33
4.2 風場與渦度、面積與環量的關聯性探討 34
4.2.1渦旋渦度、面積及環量和風應力的相關性分析 34
4.2.2風應力累積效應對渦旋發展的影響 35
4.2.3渦旋渦度、面積及環量和風速的相關性分析 35
4.2.4討論:風作用與渦旋渦度間關係之可能限制 36
4.3 渦旋軌跡的初步觀察 39
4.4 渦旋的基本物理特性 42
第五章、結論 46
參考資料 49
-
dc.language.isozh_TW-
dc.subject黑潮套流zh_TW
dc.subject風速zh_TW
dc.subject風應力zh_TW
dc.subject東北季風爆發zh_TW
dc.subject反氣旋式渦旋zh_TW
dc.subject黑潮入侵zh_TW
dc.subjectKuroshio intrusionen
dc.subjectnortheast monsoon bursten
dc.subjectanticyclonic eddyen
dc.subjectloop currenten
dc.subjectwind stressen
dc.subjectwind speeden
dc.title以長期衛星高度計資料探討南海北部黑潮套流所形成之反氣旋式渦旋zh_TW
dc.titleAnticyclonic Eddy Formation from the Kuroshio Loop Current in the Northern South China Sea: Insights from 24 Years of Altimetry Dataen
dc.typeThesis-
dc.date.schoolyear113-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee詹森;楊穎堅;鄭宇昕zh_TW
dc.contributor.oralexamcommitteeSen Jan;Yiing Jang Yang;Yu-Hsin Chengen
dc.subject.keyword黑潮入侵,黑潮套流,反氣旋式渦旋,東北季風爆發,風應力,風速,zh_TW
dc.subject.keywordKuroshio intrusion,loop current,anticyclonic eddy,northeast monsoon burst,wind stress,wind speed,en
dc.relation.page50-
dc.identifier.doi10.6342/NTU202503982-
dc.rights.note同意授權(限校園內公開)-
dc.date.accepted2025-08-14-
dc.contributor.author-college理學院-
dc.contributor.author-dept海洋研究所-
dc.date.embargo-lift2025-08-21-
顯示於系所單位:海洋研究所

文件中的檔案:
檔案 大小格式 
ntu-113-2.pdf
授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務)
11.72 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved