Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 工程科學及海洋工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98875
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor趙修武zh_TW
dc.contributor.advisorShiu-Wu Chauen
dc.contributor.author趙宣皓zh_TW
dc.contributor.authorHsuan-Hao Chaoen
dc.date.accessioned2025-08-20T16:07:10Z-
dc.date.available2025-08-21-
dc.date.copyright2025-08-20-
dc.date.issued2025-
dc.date.submitted2025-08-12-
dc.identifier.citationGlobal Wind Energy Council and Ocean Renewable Energy Action Coalition, “Offshore wind technical potential in Taiwan,” Brussels, Belgium, 2021.
C. W. Zheng, Z. N. Xiao, Y. H. Peng, C. Y. Li, and Z. B. Du, “Rezoning global offshore wind energy resources,” Renewable Energy, vol. 129, pp. 1-11, 2018.
Bureau of Energy, Ministry of Economic Affairs, Taiwan Offshore Wind Policy Roadmap, Taiwan, 2022.
P. W. S. Berg, “Towing operations – A discussion of technical challenges and operational limits,” M.S. thesis, Dept. of Marine Technology, Norwegian University of Science and Technology, 2017.
D. Yin, R. Indergård, H. Lie, and H. Braaten, “Experimental investigation of towing of a semi-submersible floating offshore wind turbine,” Journal of Physics: Conference Series, vol. 2875, no. 1, 2024.
M. Chen, Y. Chen, T. Li, Y. Tang, J. Ye, et al., “Analysis of the wet-towing operation of a semi-submersible floating wind turbine using a single tugboat,” Ocean Engineering, vol. 299, p. 117354, 2024.
M. Collu, A. Maggi, P. Gualeni, C. M. Rizzo, and F. Brennan, “Stability requirements for floating offshore wind turbine during assembly and temporary phases: Overview and application,” Ocean Engineering, vol. 84, pp. 164-175, 2014.
T. Hyland, F. Adam, F. Dahlias, and J. Großmann, “Towing tests with the GICON®-TLP for wind turbines,” in Proc. 24th Int. Ocean and Polar Eng. Conf., Busan, Korea, 2014.
P. Zhang, Y. Han, H. Ding, and S. Zhang, “Field experiments on wet tows of an integrated transportation and installation vessel with two bucket foundations for offshore wind turbines,” Ocean Engineering, vol. 108, pp. 769-777, 2015.
F. Adam, J. Großmann, and B. Schuldt, “Comparing measured results of scaled towing tests of a floating substructure for offshore wind turbines with calculated results,” in Proc. 26th Int. Ocean and Polar Eng. Conf., Rhodes, Greece, 2016.
R. C. Ramachandran, J.-J. Serraris, J. H. Montfort, E.-J. De Ridder, C. Desmond, and J. Murphy, “Towing analysis and validation of a fully assembled floating offshore wind turbine based on an experimental study,” Journal of Marine Science and Engineering, vol. 12, no. 4, p. 689, 2024.
C. Le, J. Ren, K. Wang, P. Zhang, and H. Ding, “Towing performance of the submerged floating offshore wind turbine under different wave conditions,” Journal of Marine Science and Engineering, vol. 9, no. 6, p. 633, 2021.
A. P. Crowle and P. R. Thies, “Tow out calculations for floating wind turbines,” in Proc. ASME 2022 41st Int. Conf. Ocean, Offshore and Arctic Eng., Hamburg, Germany, 2022.
J. Huang, H. Xu, L. Chen, K. Lin, M. Guo, M. Yang, and S. Rui, “Analysis of mooring performance and layout parameters of multi-segment mooring system for a 15 MW floating wind turbine,” Frontiers in Energy Research, vol. 12, p. 1502684, 2024.
Y. Jiang, Y. Duan, J. Li, M. Chen, and X. Zhang, “Optimization of mooring systems for a 10 MW semisubmersible offshore wind turbine based on neural network,” Ocean Engineering, vol. 296, p. 117020, 2024.
A. Nematbakhsh, E. E. Bachynski, Z. Gao, and T. Moan, “Comparison of wave load effects on a TLP wind turbine by using computational fluid dynamics and potential flow theory approaches,” Applied Ocean Research, vol. 53, pp. 142-154, 2015.
C. Clement, S. Kosleck, and T. Lie, “Investigation of viscous damping effect on the coupled dynamic response of a hybrid floating platform concept for offshore wind turbines,” Ocean Engineering, vol. 225, no. 101, 2021.
C. Y. Chen, “Comparative study on semi-submersible floating platforms for offshore wind in Taiwan Strait,” M.S. thesis, Dept. of Engineering Science and Ocean Engineering, National Taiwan University, 2020.
H. Y. Tong, “Normal operating performance study of a 15 MW floating wind turbine system using semi-submersible TaidaFloat platform in the Hsinchu offshore area,” M.S. thesis, Dept. of Engineering Science and Ocean Engineering, National Taiwan University, 2022.
M. Ikhennicheu, M. Lynch, S. Doole, F. Borisade, D. Matha, J. L. Dominguez, R. D. Vicente, T. Habekost, L. Ramirez, S. Potestio, C. Molins, and P. Trubat, Review of the State of the Art of Mooring and Anchoring Designs, Technical Challenges and Identification of Relevant DLCs, CoreWind Project, Tech. Rep. 815083, Barcelona, Spain, 2020.
E. Gaertner, J. Rinker, L. Sethuraman, F. Zahle, B. Anderson, G. E. Barter, and A. Viselli, “Definition of the IEA wind 15-megawatt offshore reference wind turbine,” Nat. Renew. Energy Lab., Golden, CO, USA, Tech. Rep. TP-5000-75698, 2020.
Vryhof Anchors B.V., Harnessing Offshore Mooring Experience and Anchoring Technology for the Floating Renewable Energy Systems, 2020.
DNVGL, Position Mooring, DNVGL-OS-E301, 2018.
Chun-Han Chu, “The Study on the Simulation of the Ship Towing System in Waves,” M.S. thesis, Dept. of System and Naval Mechatronic Engineering, National Cheng Kung University, Tainan, Taiwan, 2007.
H. Ding, R. Hu, C. Le, and P. Zhang, “Towing operation methods of offshore integrated meteorological mast for offshore wind farms,” Journal of Marine Science and Engineering, vol. 7, no. 9, p. 298, 2019.
Orcina, OrcaFlex Documentation, ver. 11.5a, 2024.
W. E. Cummins, “The impulse response function and ship motions,” Dept. of the Navy, David Taylor Model Basin, 1962.
Ansys, Aqwa Theory Manual, 2024.
A. Guha, “Development and application of a potential flow computer program: Determining first and second order wave forces at zero and forward speed in deep and intermediate water depth,” Ph.D. dissertation, Dept. of Ocean Engineering, Texas A&M University, College Station, TX, USA, 2016.
Siemens, Simcenter STAR-CCM+ User Guide, ver. 2402, Berlin, Germany, 2024.
F. R. Menter, “Two-equation eddy-viscosity turbulence models for engineering applications,” AIAA Journal, vol. 32, no. 8, 1994.
H. Zhang, H. Wang, X. Cai, J. Xie, Y. Wang, and N. Zhang, “Research on the dynamic performance of a novel floating offshore wind turbine considering the fully-coupled-effect of the system,” Journal of Marine Science and Engineering, vol. 10, no. 3, p. 341, 2022.
F. N. Fritsch and J. Butland, “A method for constructing local monotone piecewise cubic interpolants,” SIAM Journal on Scientific and Statistical Computing, vol. 5, no. 2, 1984.
Oil Companies International Marine Forum, Prediction of Wind and Current Loads on VLCCs, London, 1994.
G. Marsh, C. Wignall, P. R. Thies, N. Barltrop, A. Incecik, V. Venugopal, and L. Johanning, “Review and application of rainflow residue processing techniques for accurate fatigue damage estimation,” International Journal of Fatigue, vol. 82, pp. 757-765, 2016.
T. L., Chen, C. I., Lee, and T. Y., Lin, “Experiment on Hydrodynamic properties of Semi-Submersible Floating Platform,” presented at the 36th SNAME, Kaohsiung, 2024.
Central Weather Bureau, Data Buoy Observation Data Annual Report 2011-2024, 2011-2024.
R. James and M. Costa Ros, “Floating offshore wind: Market and technology review,” Carbon Trust, London, UK, 2015.
R. M. Isherwood, “A revised parameterisation of the Jonswap spectrum,” Applied Ocean Research, vol. 9, no. 1, pp. 47-50, 1987.
C. C. Chien and Y. Y. Kuo, “A study on the spectral form of nearshore water waves,” in Proc. 16th Ocean Engineering Conf., Taiwan, pp. 193-210, 1994.
World Meteorological Organization, Manual on Codes, in WMO Technical Regulations, vol. 1, pp. 379, 2019.
DNV, Environmental Conditions and Environmental Loads, DNV-RP-C205, 2010.
American Petroleum Institute, Recommended Practice for Planning, Designing and Constructing Fixed Offshore Platforms – Working Stress Design, 1993.
M. Collu, A. Maggi, P. Gualeni, C. M. Rizzo, and F. Brennan, “Stability requirements for floating offshore wind turbine (FOWT) during assembly and temporary phases: Overview and application,” Ocean Engineering, vol. 84, pp. 164-175, 2014.
Y. H. Kuan, “Towing operation prediction of semi-submersible floating offshore wind turbine,” M.S. thesis, Dept. of Engineering Science and Ocean Engineering, National Taiwan University, 2024.
DNV, Marine Operations and Marine Warranty, DNV ST-N001, 2021.
BVG Associates, Guide to a Floating Offshore Wind Farm, pp. 119, 2023.
M. Rahman and D. D. Bhatta, “Evaluation of added mass and damping coefficient of an oscillating circular cylinder,” Applied Mathematical Modelling, vol. 17, no. 2, pp. 70-79, 1993.
C. Zhao, W. Zhang, C. Chen, Q. Zhao, and B. Xiao, “Research on navigation safety of FPSO towing operation,” in Proc. 8th Int. Conf. Coastal and Ocean Engineering, vol. 809, no. 1, 2021.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98875-
dc.description.abstract本研究針對半潛式浮式風機進行兩種數值模擬分析:拖航性能評估與繫纜疲勞分析。所有模擬皆以整合 IEA 15 MW 風機之臺大浮台為基礎。水動力模擬方面,分別採用基於勢流理論的ANSYS AQWA與考慮黏性效應的STAR-CCM+ 進行模擬,並透過 OrcaFlex 求解時域運動方程式,以獲得浮台運動響應與纜繩張力變化。環境載荷條件假設風、波浪與海流同向,風與波浪分別使用 API 風譜與 JONSWAP 波譜加以描述。拖航模擬設置拖航速度為 3 節,考量三種不同吃水與兩種風向條件。繫纜疲勞分析部分,以 3×3 繫纜系統為基礎,考慮四種風浪入射方向與三種繫纜直徑。模擬結果顯示,在建議的拖航海況條件下,浮台初始穩定性良好,並符合相關設計規範;拖纜張力顯著低於材料斷裂強度,而機艙處最大加速度及浮台最大傾斜角均未超出設計容許範圍,顯示浮台於拖航階段具備充分安全性。另一方面,在新竹外海長期運轉情況下,繫纜直徑對疲勞性能具顯著影響。直徑為0.165 m與0.18 m的繫纜於多數風浪方向下無法滿足疲勞設計準則,尤以H_P方法評估時最為明顯;僅有0.20 m直徑之繫纜可在所有方向與所有分析方法下滿足疲勞容許標準。zh_TW
dc.description.abstractThis study conducts two numerical analyses on a semi-submersible floating offshore wind turbine system: towing performance and mooring line fatigue analysis. All simulations are based on the TaidaFloat platform integrated with the IEA 15 MW wind turbine. Hydrodynamic modeling is performed using ANSYS AQWA, based on potential flow theory, and STAR-CCM+, which incorporates viscous effects. The time-domain dynamic responses, including platform motions and mooring tensions, are solved using OrcaFlex. Wind, wave, and current directions are assumed to be collinear in all simulations, with wind and wave spectra defined according to the API wind spectrum and the JONSWAP wave spectrum, respectively. The towing analysis assumes a towing speed of 3 knots and considers three different draft conditions and two wind directions. For the fatigue analysis, a 3×3 mooring configuration is adopted, with simulations conducted under four wind directions and three mooring line diameters. Simulation results indicate that under the recommended towing sea state, the platform exhibits sufficient initial stability and satisfies all design criteria. The maximum towline tension remains well below the minimum break load, and both the nacelle acceleration and platform inclination angle stay within allowable limits, confirming the safety during towing. For long-term operational condition at the Hsinchu offshore site, mooring line diameter significantly influences fatigue performance. Mooring lines with diameters of 0.165 m and 0.18 m fail to meet fatigue design requirements under most wind directions, particularly when evaluated using the H_P method. Among all configurations, only the 0.20 m diameter mooring line satisfies the fatigue criteria under all environmental directions and analysis methods.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-08-20T16:07:10Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-08-20T16:07:10Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontentsAbstract I
摘要 II
Content III
Nomenclature V
List of Figures XI
List of Tables XIII
1 Introduction 1
1.1 Motivation 1
1.2 Literature Review 3
2 System Design 6
2.1 Wind Turbine Design 6
2.2 Platform Design 11
2.3 Mooring System Design 12
2.4 Wet-Towing System Design 14
3 Numerical Methods 16
3.1 Numerical Framework 16
3.2 Potential Flow Modeling 19
3.3 Viscous Flow Modeling 22
3.3.1 Governing Equations 23
3.3.2 Turbulence Model 24
3.3.3 Volume of Fluid Method 26
3.3.4 Computational Domain and Boundary Conditions 28
3.3.5 Hydrodynamic Properties Calculation 31
3.3.6 Wind and Current-Induced Drag Modeling 34
3.4 Modeling of Wind Turbine 36
3.5 Mooring and Towing Line Modeling 39
3.6 Fatigue Assessment Methodology 41
3.7 Validation 43
4 Simulation Conditions 46
4.1 Metocean Conditions 46
4.2 Case Descriptions 53
5 Design Criteria 55
6 Simulation Results 58
6.1 Hydrodynamic Properties 58
6.2 Wave Load Response Amplitude Operators 64
6.3 Wet-Towing Conditions 68
6.3.1 Intact Stability 68
6.3.2 Drag Coefficients 69
6.3.3 Towline Tension 72
6.3.4 Nacelle Acceleration 82
6.3.5 Inclination Angle 87
6.4 Long-Term Operational Conditions 92
7 Conclusions 99
References 101
-
dc.language.isoen-
dc.subject離岸浮式風機zh_TW
dc.subject半潛式浮台zh_TW
dc.subject拖航zh_TW
dc.subject穩度zh_TW
dc.subject繫纜與拖纜張力zh_TW
dc.subject傾斜角zh_TW
dc.subject繫纜疲勞zh_TW
dc.subjectSemi-Submersibleen
dc.subjectMooring Line Fatigueen
dc.subjectInclination Angleen
dc.subjectMooring and Towing Line Tensionen
dc.subjectStabilityen
dc.subjectTowingen
dc.subjectFloating Offshore Wind Turbineen
dc.title15 MW半潛式浮式風機拖航數值模擬及繫纜長期疲勞分析zh_TW
dc.titleNumerical Simulation of Towing Dynamics and Long-Term Fatigue Analysis of Mooring Line for a 15 MW Semi-Submersible Floating Offshore Wind Turbineen
dc.typeThesis-
dc.date.schoolyear113-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee鍾年勉;許文陽;鍾承憲;楊舜涵;呂學信;楊淳宇zh_TW
dc.contributor.oralexamcommitteeNien-Mien Chung;Wen-Yang Hsu;Cheng-Shien Chong;Shun-Han Yang;Syue-Sinn Leu;Chun-Yu Yangen
dc.subject.keyword離岸浮式風機,半潛式浮台,拖航,穩度,繫纜與拖纜張力,傾斜角,繫纜疲勞,zh_TW
dc.subject.keywordFloating Offshore Wind Turbine,Semi-Submersible,Towing,Stability,Mooring and Towing Line Tension,Inclination Angle,Mooring Line Fatigue,en
dc.relation.page103-
dc.identifier.doi10.6342/NTU202503705-
dc.rights.note未授權-
dc.date.accepted2025-08-14-
dc.contributor.author-college工學院-
dc.contributor.author-dept工程科學及海洋工程學系-
dc.date.embargo-liftN/A-
顯示於系所單位:工程科學及海洋工程學系

文件中的檔案:
檔案 大小格式 
ntu-113-2.pdf
  未授權公開取用
16.44 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved