Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 地理環境資源學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98861
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor黃倬英zh_TW
dc.contributor.advisorCho-Ying Huangen
dc.contributor.author張昕荷zh_TW
dc.contributor.authorHsin He Changen
dc.date.accessioned2025-08-19T16:29:02Z-
dc.date.available2025-08-20-
dc.date.copyright2025-08-19-
dc.date.issued2025-
dc.date.submitted2025-08-13-
dc.identifier.citationAldrich, M., International Union for Conservation of Nature, Natural Resources, & World Conservation Monitoring Centre. (1997). A global directory of tropical montane cloud forests. World Conservation Monitoring Centre, Cambridge.
Asner, G. P., Scurlock, J. M. O., & Hicke, J. A. (2003). Global synthesis of leaf area index observations: Implications for ecological and remote sensing studies. Global Ecology and Biogeography, 12(3), 191–205.
Atkins, J. W., Bohrer, G., Fahey, R. T., Hardiman, B. S., Morin, T. H., Stovall, A. E. L., Zimmerman, N., & Gough, C. M. (2018). Quantifying vegetation and canopy structural complexity from terrestrial LiDAR data using the forestr R package. Methods in Ecology and Evolution, 9(10), 2057–2066.
Baietto, A., Hirigoyen, A., Hernández, J., & others. (2024). Litterfall production modeling based on climatic variables and nutrient return from stands of Eucalyptus grandis Hill ex Maiden and Pinus taeda L. Journal of Forestry Research, 35, 61.
Bian, C., & Xia, J. (2023). Uncertainty propagation in a global biogeochemical model driven by leaf area data. Frontiers in Ecology and Evolution, 11.
Brodribb, T. J., Feild, T. S., & Jordan, G. J. (2007). Leaf maximum photosynthetic rate and venation are linked by hydraulics. Plant Physiology, 144(4), 1890–1898.
Bruijnzeel, L. A., Mulligan, M., & Scatena, F. N. (2010). Hydrometeorology of tropical montane cloud forests: Emerging patterns. Hydrological Processes, 25, 465–498.
Bubb, P., UNEP World Conservation Monitoring Centre, International Centre for Environmental Management, UNESCO Man and the Biosphere Programme. (2004). Cloud Forest Agenda (UNEP-WCMC Biodiversity Series No. 20). UNEP-WCMC, Cambridge.
Bürkner, P.-C. (2017). brms: An R package for Bayesian multilevel models using Stan. Journal of Statistical Software, 80(1), 1–28.
Carpenter, B., Gelman, A., Hoffman, M. D., Lee, D., Goodrich, B., Betancourt, M., Brubaker, M., Guo, J., Li, P., & Riddell, A. (2017). Stan: A probabilistic programming language. Journal of Statistical Software, 76(1), 1–32.
Chong, J.-Y., Lo, M.-H., & Huang, C.-Y. (2024). Quantification of the spatiotemporal dynamics of diurnal fog and low stratus occurrence in subtropical montane cloud forests using Himawari-8 imagery and topographic attributes. International Journal of Applied Earth Observation and Geoinformation, 134, 104212.
Chu, H.-C. (2005). Estimation of nutrient storage and fluxes of litterfall in a yellow cypress forest ecosystem [Master’s thesis, National Dong Hwa University, Hualien, Taiwan].
Clark, D. B., Oberbauer, S. F., Clark, D. A., Ryan, M. G., & Dubayah, R. O. (2021). Physical structure and biological composition of canopies in tropical secondary and old-growth forests. PLOS ONE, 16(8), 1–13.
Clark, J. S. (2005). Why environmental scientists are becoming Bayesians. Ecology Letters, 8(1), 2–14.
Cox, P. M. (2001). Description of the 'TRIFFID' dynamic global vegetation model (Technical Note 24). Hadley Centre, Met Office.
Dietze, M. C. (2017). Prediction in ecology: A first-principles framework. Ecological Applications, 27(7), 2048–2060.
Dong, N., Dechant, B., Wang, H., Wright, I. J., & Prentice, I. C. (2023). Global leaf-trait mapping based on optimality theory. Global Ecology and Biogeography, 32(7), 1152–1162.
Ehbrecht, M., Schall, P., Ammer, C., & Seidel, D. (2017). Quantifying stand structural complexity and its relationship with forest management, tree species diversity and microclimate. Agricultural and Forest Meteorology, 242, 1–9.
Ellison, A. M. (2004). Bayesian inference in ecology. Ecology Letters, 7(6), 509–520.
Enquist, B. J., Brown, J. H., & West, G. B. (1999). Allometric scaling of production and life-history variation in vascular plants. Nature, 401, 907–911.
Enquist, B. J., & Niklas, K. J. (2002). Global allocation rules for patterns of biomass partitioning in seed plants. Science, 295(5559), 1517–1520.
Fang, H., Baret, F., Plummer, S., & Schaepman-Strub, G. (2019). An overview of global Leaf Area Index (LAI): Methods, products, validation, and applications. Reviews of Geophysics, 57(3), 739–799.
Fiandino, S., Plevich, J., Tarico, J., & et al. (2020). Modeling forest site productivity using climate data and topographic imagery in Pinus elliottii plantations of central Argentina. Annals of Forest Science, 77(1), 95.
Finotti, R., Freitas, S. R., Cerqueira, R., & Vieira, M. V. (2003). A method to determine the minimum number of litter traps in litterfall studies. Biotropica, 35(3), 419–421.
ForestGEO. (2010). Litterfall monitoring protocol. https://forestgeo.si.edu/sites/default/files/litterfall_protocol_2010.pdf
Frazier, P. I. (2018). A tutorial on Bayesian optimization. arXiv:1807.02811 [stat.ML].
Gelman, A., Carlin, J. B., Stern, H. S., Dunson, D. B., Vehtari, A., & Rubin, D. B. (2013). Bayesian Data Analysis (3rd ed.). Chapman and Hall/CRC.
Gelman, A., & Hill, J. (2006). Data analysis using regression and multilevel/hierarchical models. Cambridge University Press.
Geng, A. X., Tu, Q. S., Chen, J. X., Wang, W. F., & Yang, H. Q. (2022). Improving litterfall production prediction in China under variable environmental conditions using machine learning algorithms. Journal of Environmental Management, 306, 114515.
Geppert, C., Bertolli, A., Prosser, F., & Marini, L. (2023). Red-listed plants are contracting their elevational range faster than common plants in the European Alps. Proceedings of the National Academy of Sciences, 120(12), e2211531120.
Gotsch, S. G., Nadkarni, N., & Amici, A. (2016). The functional roles of epiphytes and arboreal soils in tropical montane cloud forests. Journal of Tropical Ecology, 32, 455–468.
Hardiman, B. S., Bohrer, G., Gough, C. M., Vogel, C. S., & Curtis, P. S. (2011). The role of canopy structural complexity in wood net primary production of a maturing northern deciduous forest. Ecology, 92(9), 1818–1827.
He, L., Chen, J. M., Pan, Y., Birdsey, R., & Kattge, J. (2012). Relationships between net primary productivity and forest stand age in U.S. forests. Global Biogeochemical Cycles, 26(3).
Henneron, L., Chauvat, M., Archaux, F., Akpa-Vinceslas, M., Bureau, F., Dumas, Y., Ningre, F., Richter, C., Balandier, P., & Aubert, M. (2018). Plasticity in leaf litter traits partly mitigates the impact of thinning on forest floor carbon cycling. Functional Ecology, 32(12), 2777–2789.
Hickey, L. J., Atkins, J., Fahey, R. T., Kreider, M. R., Wales, S. B., & Gough, C. M. (2019). Contrasting development of canopy structure and primary production in planted and naturally regenerated red pine forests. Forests, 10(7).
Hijmans, R. J. (2023). terra: Spatial Data Analysis (R package version 1.7-65).
Hobbs, N. T., & Hooten, M. B. (2015). Bayesian models: A statistical primer for ecologists. Ecological Monographs, 85(1), 3–28.
Hsu, R. C.-C., Lin, C., & Chen, C. (2023). Topography-induced local climatic variations as the decisive factor in the shaping of epiphyte distributions in Chilan, northeastern Taiwan. Forests, 14(2).
Hu, K.-T., & Huang, C.-Y. (2019). A metabolic scaling theory-driven remote sensing approach to map spatiotemporal dynamics of litterfall in a tropical montane cloud forest. International Journal of Applied Earth Observation and Geoinformation, 82, 101896.
Huang, C.-M., Duh, C.-T., Chang, S.-C., & Lin, K.-C. (2012). Estimate of tree biomass and growth of hinoki stand in Chilanshan area of north-eastern Taiwan. Quarterly Journal of Chinese Forestry, 45(2), 137–150.
Huang, C.-Y., Liu, H.-C., & Chung, C.-H. (2024). Contribution of environmental factors to post-typhoon litterfall stability in subtropical montane cloud forests of the Asia-Pacific region. Forest Ecology and Management, 558, 121757.
Huang, C.-Y., Liu, H.-C., Hu, K.-T., Chung, C.-H., & Wang, J. (2023). Variation of seasonal litterfall in subtropical montane cloud forests to typhoon severity and environmental factors. Biotropica, 55(1), 132–144.
Ishihara, M. I., & Hiura, T. (2011). Modeling leaf area index from litter collection and tree data in a deciduous broadleaf forest. Agricultural and Forest Meteorology, 151(7), 1016–1022.
Jagodziński, A. M., Dyderski, M. K., Rawlik, K., & Kątna, B. (2016). Seasonal variability of biomass, total leaf area and specific leaf area of forest understory herbs reflects their life strategies. Forest Ecology and Management, 374, 71–81.
Jonckheere, I., Fleck, S., Nackaerts, K., Muys, B., Coppin, P., Weiss, M., & Baret, F. (2004). Review of methods for in situ leaf area index determination: Part I. Theories, sensors and hemispherical photography. Agricultural and Forest Meteorology, 121(1), 19–35.
Kleiber, M. (1932). Body size and metabolism. Hilgardia, 6(11), 315–353.
Li, C.-F., Zelený, D., Chytrý, M., Pillar, V. D., Sytwu, T.-W., Plášek, V., Hédl, P., & Hédl, R. (2015). Chamaecyparis montane cloud forest in Taiwan: Ecology and vegetation classification. Ecological Research, 30(4), 771–791.
Li, S., Yuan, W., Ciais, P., Viovy, N., Ito, A., Jia, B., & Zhu, D. (2019). Benchmark estimates for aboveground litterfall data derived from ecosystem models. Environmental Research Letters, 14(8), 084020.
Li, Y.-T., Huang, C.-Y., Chuang, M.-C., Chen, T.-Y., Hsieh, C.-H., Chi, Y.-C., & Lin, C.-C. (2022). Assessment of spatiotemporal dynamics of diurnal fog occurrence in subtropical montane cloud forests. Remote Sensing, 14(5), 1223.
Liaw, A., & Wiener, M. (2002). Classification and regression by randomForest. R News, 2(3), 18–22.
Lim, H., Medvigy, D., Mäkelä, A., Kim, D., Albaugh, T. J., Knier, A., Blaško, R., Campoe, O. C., Deshar, R., Franklin, O., Henriksson, N., Littke, K., Lutter, R., Maier, C. A., Palmroth, S., Rosenvald, K., Slesak, R. A., Tullus, A., & Oren, R. (2024). Overlooked branch turnover creates a widespread bias in forest carbon accounting. Proceedings of the National Academy of Sciences, 121(42), e2401035121.
Lim, K., Treitz, P., Wulder, M., St-Onge, B., & Flood, M. (2003). Lidar remote sensing of forest structure. Progress in Physical Geography: Earth and Environment, 27(1), 88–106.
Lin, S., Hu, Z., Wang, Y., Chen, X., He, B., Song, Z., Sun, S., Wu, C., Zheng, Y., Xia, X., Liu, L., Tang, J., Sun, Q., Joos, F., & Yuan, W. (2023). Underestimated interannual variability of terrestrial vegetation production by terrestrial ecosystem models. Global Biogeochemical Cycles, 37(4), e2023GB007696.
Liu, Z., Zhao, M., Zhang, H., Ren, T., Liu, C., & He, N. (2023). Divergent response and adaptation of specific leaf area to environmental change at different spatio-temporal scales jointly improve plant survival. Global Change Biology, 29(4), 1144–1159.
Malhi, Y., Doughty, C., & Galbraith, D. (2011). The allocation of ecosystem net primary productivity in tropical forests. Philosophical Transactions of the Royal Society B: Biological Sciences, 366(1582), 3225–3245.
Marod, D., Andriyas, T., Leksungnoen, N., Kjelgren, R., Thinkamphaeng, S., Chansri, P., ... & Kaewgrajang, T. (2023). Potential variables forcing litterfall in a lower montane evergreen forest using Granger and superposed epoch analyses. Ecosphere, 14, e4572.
McElreath, R. (2020). Statistical Rethinking: A Bayesian Course with Examples in R and Stan (2nd ed.). CRC Press.
Mo, L., Zohner, C. M., Reich, P. B., et al. (2023). Integrated global assessment of the natural forest carbon potential. Nature, 624, 92–101.
Neumann, M., Ukonmaanaho, L., Johnson, J., Benham, S., Vesterdal, L., Novotný, R., ... & Hasenauer, H. (2018). Quantifying carbon and nutrient input from litterfall in European forests using field observations and modeling. Global Biogeochemical Cycles, 32(5), 784–798.
Pan, Y., Birdsey, R. A., Phillips, O. L., et al. (2024). The enduring world forest carbon sink. Nature, 631, 563–569.
Poorter, H., Niklas, K. J., Reich, P. B., Oleksyn, J., Poot, P., & Mommer, L. (2012). Biomass allocation to leaves, stems and roots: Meta-analyses of interspecific variation and environmental control. New Phytologist, 193(1), 30–50.
Pouteau, R., Giambelluca, T. W., Ah-Peng, C., & Meyer, J. Y. (2018). Will climate change shift the lower ecotone of tropical montane cloud forests upwards on islands? Journal of Biogeography, 45, 1326–1333.
R Core Team. (2024). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria.
Reich, P. B., Walters, M. B., & Ellsworth, D. S. (1997). From tropics to tundra: Global convergence in plant functioning. Proceedings of the National Academy of Sciences, 94(25), 13730–13734.
Scholl, M. A., Bassiouni, M., & Torres-Sánchez, A. J. (2021). Drought stress and hurricane defoliation influence mountain clouds and moisture recycling in a tropical forest. Proceedings of the National Academy of Sciences, 118(7), e2021646118.
Schulz, H. M., Li, C. F., Thies, B., Chang, S. C., & Bendix, J. (2017). Mapping the montane cloud forest of Taiwan using 12-year MODIS-derived ground fog frequency data. PLOS ONE, 12, e0172663.
Seidel, D., Fleck, S., Leuschner, C., et al. (2011). Review of ground-based methods to measure the distribution of biomass in forest canopies. Annals of Forest Science, 68, 225–244.
Shannon, C. E. (1948). A mathematical theory of communication. Bell System Technical Journal, 27(3), 379–423.
Shen, G. R., Chen, D. M., Wu, Y., Liu, L., & Liu, C. J. (2019). Spatial patterns and estimates of global forest litterfall. Ecosphere, 10, e02587.
Shenkin, A., Bentley, L. P., Oliveras, I., Salinas, N., Adu-Bredu, S., Marimon-Junior, B. H., ... & Malhi, Y. (2020). The influence of ecosystem and phylogeny on tropical tree crown size and shape. Frontiers in Forests and Global Change, 3, 501757.
Stark, S. C., Bentley, L. P., & Enquist, B. J. (2011). Response to ‘testing the metabolic scaling theory of tree growth’. Journal of Ecology, 99(3), 741–747.
Stegen, J. C., Swenson, N. G., Enquist, B. J., White, E. P., Phillips, O. L., Jørgensen, P. M., ... & Dick, C. W. (2011). Variation in above-ground forest biomass across broad climatic gradients. Global Ecology and Biogeography, 20(6), 744–754.
Stigler, S. M. (1986). The history of statistics: The measurement of uncertainty before 1900. Harvard University Press.
Thakur, T. K., Eripogu, K. K., Thakur, A., Kumar, A., Bakshi, S., Swamy, S. L., ... & Kumar, M. (2022). Disentangling forest dynamics for litter biomass production in a biosphere reserve in central India. Frontiers in Environmental Science, 10.
Thomas, P. A. (2014). The trunk and branches: More than a connecting drainpipe (pp. 51–101). Cambridge University Press.
van de Schoot, R., Kaplan, D., Denissen, J., Asendorpf, J. B., Neyer, F. J., & van Aken, M. A. G. (2014). A gentle introduction to Bayesian analysis: Applications to developmental research. Child Development, 85(3), 842–860.
Wang, Y.-C., & Huang, C.-Y. (2023). Cross-scale assessments of the impacts and resilience of subtropical montane cloud forests to climate disturbances. Ecological Indicators, 152, 110307.
Wang, Z., Ji, M., Deng, J., Milne, R. I., Ran, J., Zhang, Q., ... & Niklas, K. J. (2015). A theoretical framework for whole-plant carbon assimilation efficiency based on metabolic scaling theory: A test case using Picea seedlings. Tree Physiology, 35(6), 599–607.
Wang, Z., Liu, X., Bader, M. Y., Feng, D., & Bao, W. (2017). The ‘plant economic spectrum’ in bryophytes: A comparative study in subalpine forest. American Journal of Botany, 104(2), 261–270.
Watson, D. J. (1947). Comparative physiological studies on the growth of field crops: I. Variation in net assimilation rate and leaf area between species and varieties, and within and between years. Annals of Botany, 11(41), 41–76.
Wehr, A., & Lohr, U. (1999). Airborne laser scanning—An introduction and overview. ISPRS Journal of Photogrammetry and Remote Sensing, 54(2), 68–82.
West, G. B., Brown, J. H., & Enquist, B. J. (1997). A general model for the origin of allometric scaling laws in biology. Science, 276(5309), 122–126.
West, G. B., Brown, J. H., & Enquist, B. J. (1999). The fourth dimension of life: Fractal geometry and allometric scaling of organisms. Science, 284(5420), 1677–1679.
Wu, C.-H. (2006). Application of BIOME-BGC model to simulate the carbon budget in a yellow cypress forest ecosystem at the Chi-Lan Mountain site [Master’s thesis, National Dong Hwa University, Hualien, Taiwan].
Yan, Y. (2024). rBayesianOptimization: Bayesian Optimization of Hyperparameters (Version 1.2.1) [R package].
Yang, Y., Roderick, M., Guo, H., et al. (2023). Evapotranspiration on a greening Earth. Nature Reviews Earth & Environment, 4, 626–641.
Yeh, C.-F. (2004). Estimation of biomass and fog deposition of a yellow cypress forest [Master’s thesis, National Dong Hwa University, Hualien, Taiwan].
Zhang, Z., Zhong, Q., Niklas, K. J., et al. (2016). A predictive nondestructive model for the covariation of tree height, diameter and stem volume scaling relationships. Scientific Reports, 6, 31008.
Zhao, X., Tang, X., Du, J., Pei, X., Chen, G., & Xu, T. (2022). A data-driven estimate of litterfall and forest carbon turnover and the drivers of their inter-annual variabilities in forest ecosystems across China. Science of The Total Environment, 821, 153341.
Zheng, G., & Moskal, L. M. (2009). Retrieving leaf area index (LAI) using remote sensing: Theories, methods and sensors. Sensors, 9(4), 2719–2745.
Zhu, W., Xie, Z., Zhao, C., Zheng, Z., Qiao, K., Peng, D., & Fu, Y. H. (2024). Remote sensing of terrestrial gross primary productivity: A review of advances in theoretical foundation, key parameters and methods. GIScience & Remote Sensing, 61(1), 2318846.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98861-
dc.description.abstract枯落物(litterfall)由樹葉、細枝、樹皮以及繁殖構造等組成,是森林生態系中碳與養分循環的重要途徑,在熱帶與亞熱帶森林中,其貢獻可高達淨初級生產量(NPP)的三分之一。然而,傳統上以地面樣區為基礎的枯落物監測方法不僅勞力密集,且在地形複雜的環境中(如亞熱帶山地雲霧林)適用於大面積區域。因此本研究旨在結合森林結構特徵與生態理論,探索在異質性景觀中推估枯落物的可行性與尺度延伸性。
本研究以台灣東北部24,400公頃的棲蘭山區為研究場域,結合 2021 至 2023 年的地面觀測資料、空載光達(LiDAR)數據與貝式階層模型,分析枯落物的時空動態變化。我們首先建立隨機森林回歸模型,利用光達推算的最大樹冠高度與冠層粗糙度預測葉面積指數(LAI),其預測表現足以信賴(OOB R-sqaured = 0.61)。接著,基於代謝尺度理論(Metabolic Scaling Theory, MST)建構模型,使用 LAI 預測枯落物產量,並將生物量的周轉率區分為葉片、細根與莖部組成。推估結果中,LAI (葉片生物量)與莖部生物量之間的縮放指數 p 為約 0.91,略高於 MST 所預期的值 (0.75),顯示本區域的樹種可能相較於全球森林平均,更傾向於將碳分配至葉片,具有較高的冠層碳投資比例。
本研究提供了一個具規模化潛力以及機制基礎的碳動態推估框架,不僅能進行空間外插,亦能納入模型不確定性,特別適用於資料受限的山地森林生態系研究。
zh_TW
dc.description.abstractLitterfall, comprising leaves, twigs, bark, and reproductive structures, is a key pathway of carbon and nutrient turnover in forest ecosystems and can account for up to one-third of net primary production (NPP) in tropical and subtropical forests. However, conventional field-based litterfall monitoring methods are labor-intensive and making it impractical for a large region, especially in topographically complex environments such as subtropical montane cloud forests (MCFs). Therefore, this study investigates the use of structural forest traits and ecological theory to scale litterfall estimation across heterogeneous landscapes.
Focusing on the 24,400 ha Chilan Mountain of northeastern Taiwan, this study integrates field observations (from 2021 to 2023), airborne LiDAR data, and Bayesian hierarchical models to analyze the spatiotemporal dynamics of litterfall. We first constructed a linear model to predict Leaf Area Index (LAI) using LiDAR-derived maximum canopy height and canopy rugosity, achieving robust performance (OOB R-squared = 0.61). Subsequently, LAI was used as an input to a Metabolic Scaling Theory (MST)-based model for estimating litterfall production, in which biomass turnover is partitioned into leaf, fine root, and stem components. The estimated scaling exponent p that links LAI (leaf biomass) to stem biomass was approximately 0.91, deviating from the theoretical predictions of MST (0.75), and suggesting a relatively higher investment in canopy carbon among trees in the study area compared to global averages.
Our approach enables spatial extrapolation of litterfall while accounting for uncertainty, offering a scalable, mechanistic framework for understanding carbon dynamics in data-limited montane ecosystems.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-08-19T16:29:02Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-08-19T16:29:02Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents謝辭 i
摘要 ii
Abstract iii
Table of Contents iv
List of Figures vi
List of Tables xi
Chapter 1 Introduction 1
Chapter 2 Literature Review 4
2.1 Montane cloud forests 4
2.2 Litterfall and LAI 5
2.3 LiDAR for forest structure mapping 7
2.4 Metabolic scaling theory 8
2.5 Bayesian modeling in ecology 12
2.6 Summary 13
Chapter 3 Materials and Methods 16
3.1 Study area 16
3.2 The monitoring network 19
3.3 Litterfall collection 21
3.4 Field measurement of LAI 23
3.5 Model structure and inference 23
3.5.1 Bayesian model framework 23
3.5.2 Leaf-driven model 26
3.5.3 Root- and stem-driven model 28
3.5.4 Sampling and convergence 30
3.6 Two-stage prediction of LAI 32
3.6.1 LiDAR-based LAI estimation 32
3.6.2 Litterfall simulation 42
Chapter 4 Results 44
4.1 Bayesian parameter estimation 44
4.2 LAI prediction 50
4.3 Spatial pattern of litterfall 55
Chapter 5 Discussion 58
5.1 Insights from MST 58
5.2 Structure–LAI relationship 60
5.3 Uncertainty in prediction 62
5.4 Limitations and future works 63
Chapter 6 Conclusions 65
References 67
-
dc.language.isoen-
dc.subject異速生長zh_TW
dc.subject碳分配zh_TW
dc.subject臺灣扁柏zh_TW
dc.subject森林結構zh_TW
dc.subject淨初級生產量zh_TW
dc.subject不確定性量 化zh_TW
dc.subjectforest structureen
dc.subjectallometryen
dc.subjectcarbon allocationen
dc.subjectNPPen
dc.subjectuncertainty quantificationen
dc.subjectChamaecyparis obtusa var. formosanaen
dc.title以葉面積指數作為代謝縮放理論指標預測山地雲霧林枯落物:結合光達與貝氏模型zh_TW
dc.titleUsing Leaf Area Index as a Proxy in Metabolic Scaling Theory to Predict Litterfall in Montane Cloud Forests:Integrating LiDAR and Bayesian Modelingen
dc.typeThesis-
dc.date.schoolyear113-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee謝志豪;亞歷山卓克里維zh_TW
dc.contributor.oralexamcommitteeChih-Hao Hsieh;Alessandro Crivellarien
dc.subject.keyword異速生長,碳分配,臺灣扁柏,森林結構,淨初級生產量,不確定性量 化,zh_TW
dc.subject.keywordallometry,carbon allocation,Chamaecyparis obtusa var. formosana,forest structure,NPP,uncertainty quantification,en
dc.relation.page77-
dc.identifier.doi10.6342/NTU202501035-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2025-08-14-
dc.contributor.author-college理學院-
dc.contributor.author-dept地理環境資源學系-
dc.date.embargo-lift2025-08-20-
顯示於系所單位:地理環境資源學系

文件中的檔案:
檔案 大小格式 
ntu-113-2.pdf41.67 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved