請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98859完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 王泰典 | zh_TW |
| dc.contributor.advisor | Tai-Tien Wang | en |
| dc.contributor.author | 賴品咸 | zh_TW |
| dc.contributor.author | Pin-Xian Lai | en |
| dc.date.accessioned | 2025-08-19T16:28:35Z | - |
| dc.date.available | 2025-08-20 | - |
| dc.date.copyright | 2025-08-19 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-08-13 | - |
| dc.identifier.citation | 1. Adachi, J., Siebrits, E., Peirce, A., Desroches J., 2007. Computer simulation of hydraulic fractures. Int. J. Rock Mech. Min. Sci. 44, 739–757
2. Al-Busaidi A., Hazzard J. F., Young R. P., 2005. Distinct element modeling of hydraulically fractured Lac du Bonnet granite. J. Geophys. Res. 110, B06302. 3. Aziz, N. (2009). Proceedings of the 2002 Coal Operators' Conference. University of Wollongong. 4. Bock, H., 1993. Measuring in-situ rock stresses by borehole slotting. In: Hudson, J. A., editor. Comprehensive rock engineering—principles, practice & projects, vol. 3. Oxford: Pergamon Press, 433–443. 5. Cornet, F. H., 1986. Stress determination from hydraulic tests on preexisting fractures - the H. T. P. F. method. Proc. Int. Symp. On Rock Stress and Rock Stress Measurements, 301–312. 6. Cornet, F. H., Burlet, D., 1992. Stress field determinations in France by hydraulic tests in boreholes. J. Geophys. Res. 97, B8, 11829–11849. 7. Dey, T., Brown, D., 1986. Stress measurements in deep granitic rock mass using hydraulic fracturing and differential strain curve analysis. In: Stephansson, O., editor. Rock stress and rock stress measurements. Centek Publishers, Lulea, 351–357. 8. Falls, S. D., Young, R. P., Carlson, S. R., Chow, T., 1992. Ultrasonic tomography and acoustic emission in hydraulically fractured Lac du Bonnet granite. Journal of Geophysical Research, 97, no. B5, 6867–6884. 9. Gao, G., Wang, C., & Gao, K. (2024). Stress tensor determination by modified hydraulic tests on pre-existing fractures: method and stress constraints. Journal of Rock Mechanics and Geotechnical Engineering, 16(5), 1637-1648. 10. Goodman, R. E., 1980. Introduction to rock mechanics. Wiley, New York. 11. Guo, T., Zhang, S., Qu, Z., Zhou, T., Xiao, Y., Gao, J., 2014. Experimental study of hydraulic fracturing for shale by stimulated reservoir volume. Fuel 128, 373– 12. Hatton, C. G., Main, I. G., & Meredith, P. G. (1994). Non-universal scaling of fracture length and opening displacement. Nature, 367(6459), 160-162. 13. Heidbach, O., Rajabi, M., Cui, X., ... Zoback, M. D., 2018. The World Stress Map database release 2016: Crustal stress pattern across scales. Tectonophysics 744, 484–498. 14. Heidbach, O., Tingay, M., Barth, A., ... Müller, B., 2008. Global crustal stress pattern based on the World Stress Map database release 2008. Tectonophysics 482, 3–15. 15. Herget, G., 1986. Changes of ground stresses with depth in the Canadian Shield. In: Stephansson, O., editor. Rock stress and rock stress measurements, Centek Publishers, Lulea, 61–68. 16. Hoek, E., and Bieniawski, Z. T., 1965. Brittle fracture propagation in rock under compression. Int. J. Fracture Mech. 1, 137–155. 17. Hubbert, K. M., Willis, D. G., 1957. Mechanics of hydraulic fracturing. Petroleum Transactions, AIME, T.P. 4597 210, 153–166. 18. Hyett, A. J., Dyke, C. G., Hudson, J. A., 1986. A critical examination of basic concepts associated with the existence and measurement of in situ stress. In: Stephansson, O., editor. Proc. of Rock Stress and Rock Stress Measurement Conference. Stockholm: Centek, 387–396. 19. Joe, B. (1991). Construction of three-dimensional Delaunay triangulations using local transformations. Computer Aided Geometric Design, 8(2), 123-142. 20. Kaiser, J., 1953. Erkenntnisse und Folgerungen aus der Messung von Geräuschen bei Zugbeanspruchung von metallischen Werkstoffen. Archiv für das Eisenhüttenwesen 24, 43–45. 21. Khan, F., Mahmoud, M., Raza, A., AlTammar, M. J., Patil, S., Murtaza, M., & Kamal, M. S. (2024). Application of Endothermic Fluids to Lower the Breakdown Pressure of Unconventional Reservoirs: Implications for Hydraulic Fracturing. ACS omega, 9(35), 37253-37264. 22. Knoll, P., 1990. The fluid-induced tectonic rock burst of March 13, 1989 in Werra potash mining district of the GDR (first result). Gerlands Beiträge zur Geophysik 99, 239–245. 23. Leeman, E. R., 1964. The measurement of stress in rock – Parts I, II and III. J. S. Air Inst. Min Metal 65, 45–114, 254–284. 24. Leeman, E. R., Hayes, D. J., 1966. A technique for determining the complete state of stress in rock using a single borehole. In: Proceedings 1st Congress International Society of Rock Mechanics, vol. 2, Lisbon, 17–24. 25. Li, Y., Schmitt, D. R., 1998. Drilling-induced core fractures and in situ stress. J. Geophys. Res. 103(B3), 5225–5239. 26. Li, Z., & Rao, Q. H. (2021). Quantitative determination of PFC3D microscopic parameters. Journal of Central South University, 28(3), 911-925. 27. Lindfors, U., & Perman, F. (2007). Oskarshamn Site Investigation: Overcoring Rock Stress Measurements in Borehole KLX12A. SKB. 28. Liu, H., Ji, W., Huang, Y., Zhang, W., Yang, J., Xu, J., & Mei, M. (2024). Numerical simulation of hydraulic fracture propagation on multilayered formation using limited entry fracturing technique. Processes, 12(6), 1099. 29. Matsuki, K., 1991. Three-dimensional in-situ stress measurement with anelastic strain recovery of a rock core. In: Wittke, W., editor. Proc. 7th Int. Congr. Rock Mech., Aachen, 1, 557–560. 30. Matsuki, K., 2008. Anelastic strain recovery compliance of rocks and its application to in situ stress measurement. Int. J. Rock Mech. Min. Sci. 45, 952–965. 31. Sazid, M., Hussein, K., & Abudurman, K. (2023). Rock stress measurement methods in rock mechanics—a brief overview. World Journal of Engineering and Technology, 11(2), 252-272. 32. Shentu, J., Lin, B., Jin, Y., & Yoon, J. S. (2024). Investigation of hydraulic fracture propagation in conglomerate rock using discrete element method and explainable machine learning framework. Acta Geotechnica, 19(6), 3837-3862. 33. Wang, M., & Cao, P. (2017). Calibrating the micromechanical parameters of the PFC2D (3D) models using the improved simulated annealing algorithm. Mathematical Problems in Engineering, 2017(1), 6401835. 34. Yoon, J. S., Zang, A., Stephansson, O., Hofmann, H., & Zimmermann, G. (2017). Discrete element modelling of hydraulic fracture propagation and dynamic interaction with natural fractures in hard rock. Procedia Engineering, 191, 1023-1031. 35. Yoon, J. S., Zimmermann, G., & Zang, A. (2015). Numerical investigation on stress shadowing in fluid injection-induced fracture propagation in naturally fractured geothermal reservoirs. Rock Mechanics and Rock Engineering, 48, 1439-1454. 36. Zang, A., & Stephansson, O. (2009). Stress field of the Earth's crust. Springer Science & Business Media. 37. Zhou, L., & Hou, M. Z. (2013). A new numerical 3D-model for simulation of hydraulic fracturing in consideration of hydro-mechanical coupling effects. International Journal of Rock Mechanics and Mining Sciences, 60, 370-380. 38. Zhou, J., & Yoon, J. S. (2024). The development of hydro-mechanical coupling method based on PFC3D with the Finite Volume Method. 39. Zoback, M. D., Rummel, F., Jung, R., & Raleigh, C. B. (1977, March). Laboratory hydraulic fracturing experiments in intact and pre-fractured rock. In International Journal of Rock Mechanics and Mining Sciences & Geomechanics 40. 童舒暘。(2020)。「岩石水力破裂數值分析模式建立暨初步物理模型試驗」。碩士論文。國立台灣大學土木工程學研究所,台北。 41. 黃宥傑。(2021)。「三維水力破裂試驗顆粒流模擬技術開發」 。碩士論文。國立台灣大學土木工程學研究所,台北。 42. 鄭瑞彰。(2024)。「使用震源機制和 GNSS 位移場發展最終岩石應力模型− 以台灣中部為例」。 國立台灣大學土木工程學研究所,台北。 | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98859 | - |
| dc.description.abstract | 本研究旨在提升三維水力破裂模擬技術之準確性與數值效率,建構一套整合流體滲流與裂隙破壞行為的顆粒流模擬模型。本研究以離散元素法(Discrete Element Method, DEM)為基礎,配合 Delaunay 四面體剖分演算法與幾何拓樸概念,實現動態網格更新與斷鍵判定機制,並透過 Python 程式語言開發自動化流程,以有效處理三維裂隙生成與流體導通過程中的網格重建與導水性計算。整體模擬流程考量了岩石裂縫內部的流場變化、鍵結破壞行為以及顆粒位移分布,使模型能夠同時呈現壓力變化與裂縫幾何成長之特徵。
為驗證模型之準確性與可行性,本研究亦同步進行室內物理水力破裂試驗。試體選用來自印尼之凝灰岩,具有完整結構、無明顯天然裂隙,適合用於破裂機制觀察。試體尺寸為 30×30×30 公分,並進行單軸應力條件施加約1.5MPa之軸向壓力,再施以定流量注水進行破裂試驗。注水系統由低流量注水機控制,約 0.1 ml/s,水壓可達 3 MPa 以上,壓力感測與數據紀錄則由監測系統即時完成。 數值模擬結果顯示,在等向圍壓與三軸應力條件下皆可觀察到典型的壓力–時間曲線,並能清楚辨識破裂壓力(P_b)、再開壓力(P_r)與閉合壓力(P_s)等重要特徵壓力點。在均向應力情境下,雖各主應力相等,仍可發現隨著圍壓提升,破裂壓力 P_b 呈現上升趨勢,顯示模型能合理反映流體破裂臨界壓力對應力環境的敏感性。此外,滲流模型中壓力傳遞方向與球顆粒的位移變化皆符合基本物理現象;例如裂縫擴展大多沿垂直於最小主應力方向發展,並伴隨孔隙水壓從裂縫起裂點向外傳導之行為,驗證本模擬在耦合力學與滲流場之描述上具備高度一致性與合理性。案例分析亦指出,當主應力差異不足時,裂縫成長方向將顯現隨機性,此結果與理論預期相符,突顯主應力差對裂縫導向的重要性。 然而,本研究在物理實驗過程中仍遭遇若干限制。例如 PU 膠封水效果不佳導致壓力累積與破裂時機錯判,部分試體產生非預期洩壓現象,可能造成水流外洩與壓力曲線異常。此外,模擬模型中部分參數尚未完成率定,如鍵結強度、水力導通參數等,影響壓力反演精度與裂隙形態準確度,未來仍須進一步改進與驗證。 | zh_TW |
| dc.description.abstract | This study aims to enhance the accuracy and computational efficiency of three-dimensional hydraulic fracturing simulations by developing an integrated particle flow model that captures both fluid seepage and fracture behavior. Based on the Discrete Element Method (DEM), the model incorporates Delaunay tetrahedral meshing and geometric-topological concepts to enable dynamic mesh updates and bond failure detection. A Python-based automated workflow was developed to efficiently handle 3D fracture propagation and flow path reconstruction, including transmissivity calculations.
To validate the model’s accuracy and feasibility, a series of laboratory-scale hydraulic fracturing experiments were conducted. The tested specimens were intact tuff samples from Indonesia, free of visible natural fractures, making them suitable for fracture mechanism observation. The specimens measured 30×30×30 cm and were subjected to an axial stress of approximately 1.5 MPa under uniaxial loading conditions. Constant-rate fluid injection was performed using a low-flow-rate pump (approximately 0.1 ml/s), with pressures exceeding 3 MPa, and the entire injection process was monitored in real time using a pressure-sensing and data acquisition system. Numerical simulation results revealed characteristic pressure–time curves under both isotropic and triaxial stress conditions, clearly identifying key pressure points including breakdown pressure (P_b), reopening pressure (P_r), and shut-in pressure (P_s). Under isotropic stress, where all principal stresses are equal, the simulations still showed that P_b increased with confining pressure, indicating that the model appropriately captures the sensitivity of fracture initiation to the surrounding stress environment. Furthermore, the simulated fluid transmission paths and particle displacements aligned well with fundamental physical principles. For instance, fractures generally propagated perpendicular to the minimum principal stress direction, with pore pressure diffusing outward from the initiation site—demonstrating strong consistency between the coupled mechanical and hydraulic fields. Case analyses also indicated that when the stress difference between principal directions is minimal, the resulting fracture propagation becomes more random in orientation, consistent with theoretical expectations and emphasizing the role of principal stress anisotropy in guiding fracture direction. Nevertheless, several experimental limitations were encountered. Incomplete sealing by polyurethane (PU) led to premature pressure buildup and misinterpretation of fracture timing, resulting in fluid leakage and abnormal pressure responses in some specimens. Additionally, some key simulation parameters—such as bond strength and hydraulic conductivity—have not yet been fully calibrated, affecting both the accuracy of pressure inversion and the fidelity of simulated fracture geometries. These issues highlight areas for future refinement and model validation. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-08-19T16:28:35Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-08-19T16:28:35Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 誌謝 i
中文摘要 ii 英文摘要 iii 目 次 v 圖 次 vii 表 次 x 第1章 緒論 1 1.1 研究動機 1 1.2 研究目的與方法 2 1.3 本文內容 3 第2章 文獻回顧 4 2.1 現地應力 4 2.2 現地應力的量測與最終岩石應力模型 5 2.3 水力破裂法 7 2.4 岩層中注水相關試驗 10 2.5 岩層注水相關之數值模擬 14 2.6 實驗室水力破裂物理試驗 17 第3章 研究方法論 20 3.1 數值模擬 20 3.1.1 模型鍵結選擇 21 3.1.2 模擬概念 22 3.1.3 模型假設 23 3.1.4 Neighbor method 23 3.2 物理模型 29 3.2.1 實驗試體 29 3.2.2 實驗儀器設備 29 3.2.3 實驗流程 30 第4章 結果與討論 33 4.1 數值模擬分析結果 33 4.1.1 利用Delaunay triangulation method定義儲水槽 33 4.1.2 應力伺服控制 35 4.1.3 球體生成 36 4.1.4 模型中滲透係數之初始率定與破壞後調整策略 36 4.1.5 滲流模型模擬成果 37 4.1.6 應力條件對於P_b以及裂隙發展方向之影響 38 4.1.7 增加球顆粒結果 52 4.2 物理實驗分析結果 54 第5章 結論與建議 56 5.1 數值模擬 56 5.2 物理試驗 56 參考文獻 57 附錄 口試回答紀錄暨回覆表 61 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | PFC3D | zh_TW |
| dc.subject | 水力破裂 | zh_TW |
| dc.subject | Delaunay三角剖分 | zh_TW |
| dc.subject | Delaunay triangulation | en |
| dc.subject | Hydraulic fracturing | en |
| dc.subject | PFC3D | en |
| dc.title | 水力破裂試驗三維顆粒流模擬技術精進 | zh_TW |
| dc.title | Enhancement of 3D Particle Flow Code (PFC) Modeling Techniques for Hydraulic Fracturing Experiments | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.coadvisor | 鄭富書 | zh_TW |
| dc.contributor.coadvisor | Fu-Shu Jeng | en |
| dc.contributor.oralexamcommittee | 董家鈞;葉恩肇;邱家吉 | zh_TW |
| dc.contributor.oralexamcommittee | Jia-Jyun Dong;En-Chao Yeh;Chia-Chi Chiu | en |
| dc.subject.keyword | 水力破裂,PFC3D,Delaunay三角剖分, | zh_TW |
| dc.subject.keyword | Hydraulic fracturing,PFC3D,Delaunay triangulation, | en |
| dc.relation.page | 71 | - |
| dc.identifier.doi | 10.6342/NTU202504242 | - |
| dc.rights.note | 同意授權(全球公開) | - |
| dc.date.accepted | 2025-08-14 | - |
| dc.contributor.author-college | 工學院 | - |
| dc.contributor.author-dept | 土木工程學系 | - |
| dc.date.embargo-lift | 2025-08-20 | - |
| 顯示於系所單位: | 土木工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-2.pdf | 4.73 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
