Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
    • Advisor
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 電信工程學研究所
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98855
Full metadata record
???org.dspace.app.webui.jsptag.ItemTag.dcfield???ValueLanguage
dc.contributor.advisor邱奕鵬zh_TW
dc.contributor.advisorYih-Peng Chiouen
dc.contributor.author曹宇慶zh_TW
dc.contributor.authorYu-Ching Tsaoen
dc.date.accessioned2025-08-19T16:27:43Z-
dc.date.available2025-08-20-
dc.date.copyright2025-08-19-
dc.date.issued2025-
dc.date.submitted2025-08-14-
dc.identifier.citation參考文獻

[1] Y. Tseng, H. Ting, and T. Wu, “A Quadruplet-Resonator-Based Ferrite-Free Choke for Suppressing Noise Currents on Cable Shielding,” IEEE Transactions on Microwave Theory and Techniques, vol. 64, no. 1, pp. 86-95, 2016.
[2] C.H. Wu(2021), “Efficient Suppression of Wi-Fi Noise on Cable with Double-Split-Ring Resonators”(Master’s thesis), National Taiwan University, Taipei.
[3] O. Sydoruk, E. Tatartschuk, E. Shamonina, and L. Solymar, “Analytical formulation for the resonant frequency of split rings,” Journal of Applied Physics, vol. 105, pp. 014903-014903, 02/01, 2009.
[4] E. B. Rosa, and F. W. Grover, Formulas and tables for the calculation of mutual and self-inductance: US Government Printing Office, 1948.
[5] A. Vallecchi, E. Shamonina, and C. Stevens, “Analytical model of the fundamental mode of 3D square split ring resonators,” Journal of Applied Physics, vol. 125, pp. 014901, 01/07, 2019.
[6] J. Allen, and S. Segre, “The electric field in single-turn and multi-sector coils,” Il Nuovo Cimento (1955-1965), vol. 21, no. 6, pp. 980-987, 1961.
[7] R. Marques, and F. Medina, “Role of bianisotropy in negative permeability and left-handed metamaterials,” Phys. Rev. B, vol. 65, 04/04, 2002.
[8] C. Saha, J. Y. Siddiqui, and Y. M. M. Antar, "Square split ring resonator backed coplanar waveguide for filter applications." pp. 1-4.
[9] F. E. Terman, “Radio engineer's handbook,” 1943.
[10] C. Saha, and J. Siddiqui, “Versatile CAD Formulation for Estimation of the Resonant Frequency and Magnetic Polarizability of Circular Split Ring Resonators,” International Journal of RF and Microwave Computer‐Aided Engineering, vol. 21, pp. 432-438, 07/01, 2011.
[11] I. J. Bahl, and P. Bhartia, Microwave Solid State Circuit Design, 2003.
[12] Y. Kane, “Numerical solution of initial boundary value problems involving maxwell's equations in isotropic media,” IEEE Transactions on Antennas and Propagation, vol. 14, no. 3, pp. 302-307, 1966.
[13] J. Baena, R. Marques, F. Medina, and J. Martel, “Artificial magnetic metamaterial design by using spiral resonators,” Physical Review B, vol. 20, 01/08, 2004.
[14] F. Bilotti, A. Toscano, and L. Vegni, “Design of Spiral and Multiple Split-Ring Resonators for the Realization of Miniaturized Metamaterial Samples,” IEEE Transactions on Antennas and Propagation, vol. 55, no. 8, pp. 2258-2267, 2007.
[15] M. K. T. Al-Nuaimi, and W. Whittow, Compact microstrip band stop filter using SRR and CSSR: Design, simulation and results, 2010.
[16] T. Xie, G.-R. Kim, and Y.-K. Choi, “A Study on the Novel Rectangular Split Ring Notch Resonators,” Journal of information and communication convergence engineering, vol. 8, 08/31, 2010.
[17] J. B. Pendry, A. Holden, W. Stewart, and I. Youngs, “Extremely low frequency plasmons in metallic mesostructures,” Physical review letters, vol. 76, no. 25, pp. 4773, 1996.
[18] V. Veselago, “The Electrodynamics of Substances with Simultaneously Negative Values ofB and#¼,” Physics-Uspekhi, vol. 10, pp. 509-514, 1968.
[19] J. B. Pendry, “Negative Refraction Makes a Perfect Lens,” Physical review letters, vol. 85, pp. 3966-9, 11/01, 2000.
[20] D. Schurig, J. J. Mock, B. J. Justice, S. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial Electromagnetic Cloak at Microwave Frequencies,” Science (New York, N.Y.), vol. 314, pp. 977-80, 12/01, 2006.
[21] N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. Padilla, “Perfect Metamaterial Absorber,” Physical review letters, vol. 100, pp. 207402, 05/23, 2008.
[22] B. Ozbey, and O. Aktas, “Continuously tunable terahertz metamaterial employing magnetically actuated cantilevers,” Optics Express, vol. 19, no. 7, pp. 5741-5752, 2011/03/28, 2011.
[23] S. A. Ramakrishna, “Physics of negative refractive index materials,” Rep. Prog. Phys, vol. 68, pp. 449-521, 02/01, 2005.
[24] R. A. Shelby, D. Smith, and S. Schultz, “Experimental Verification of a Negative Index of Refraction,” Science, vol. 292, pp. 77 - 79, 2001.
[25] F. Martin, F. Falcone, J. Bonache, R. Marques, and M. Sorolla, “Miniaturized coplanar waveguide stop band filters based on multiple tuned split ring resonators,” IEEE Microwave and Wireless Components Letters, vol. 13, no. 12, pp. 511-513, 2003.
[26] R. A. Shelby, D. R. Smith, S. Nemat-Nasser, and S. Schultz, “Microwave transmission through a two-dimensional, isotropic, left-handed metamaterial,” Applied Physics Letters, vol. 78, pp. 489-491, 01/22, 2001.
[27] J. Allen, and S. Segre, “The electric field in single-turn and multi-sector coils,” Il Nuovo Cimento (1955-1965), vol. 21, no. 6, pp. 980-987, 1961.
[28] R. Mustafa, “Ring Resonator with single gap for Measurement of Dielectric Constants of Materials,” Univ. Gavle, 2013.
[29] J. D. Baena, J. Bonache, F. Martin, R. M. Sillero, F. Falcone, T. Lopetegi, M. A. G. Laso, J. Garcia-Garcia, I. Gil, M. F. Portillo, and M. Sorolla, “Equivalent-circuit models for split-ring resonators and complementary split-ring resonators coupled to planar transmission lines,” IEEE Transactions on Microwave Theory and Techniques, vol. 53, no. 4, pp. 1451-1461, 2005.
[30] R. Marques, F. Mesa, J. Martel, and F. Medina, “Comparative analysis of edge- and broadside- coupled split ring resonators for metamaterial design - theory and experiments,” IEEE Transactions on Antennas and Propagation, vol. 51, no. 10, pp. 2572-2581, 2003.
[31] Y. Shang, H. Yu, D. Cai, J. Ren, and K. S. Yeo, “Design of High-Q Millimeter-Wave Oscillator by Differential Transmission Line Loaded With Metamaterial Resonator in 65-nm CMOS,” IEEE Transactions on Microwave Theory and Techniques, vol. 61, pp. 1892-1902, 05/01, 2013.
[32] F. Martín, J. Bonache, F. Falcone, M. Sorolla Ayza, and R. Marques, “Split ring resonator-based left-handed coplanar waveguide,” Applied Physics Letters, vol. 83, pp. 4652-4654, 12/01, 2003.
[33] F. Aznar, M. Gil, G. Siso, J. Bonache, and F. Martin, "SRR- and CSRR-based Metamaterial Transmission Lines: Modeling and Comparison." pp. 49-52.
[34] Z. Fu-Li, Z. Qian, L. Ya-Hong, L. Chun-Rong, and Z. Xiao-Peng, “Behaviour of Hexagon Split Ring Resonators and Left-Handed Metamaterials,” Chinese Physics Letters, vol. 21, pp. 1330, 07/12, 2004.
[35] F. Bilotti, A. Toscano, L. Vegni, K. Aydin, K. B. Alici, and E. Ozbay, “Equivalent-Circuit Models for the Design of Metamaterials Based on Artificial Magnetic Inclusions,” IEEE Transactions on Microwave Theory and Techniques, vol. 55, no. 12, pp. 2865-2873, 2007.
[36] T. Hayajneh, G. Almashaqbeh, S. Ullah, and A. Vasilakos, “A survey of wireless technologies coexistence in WBAN: Analysis and open research issues,” Wireless Networks, vol. 20, pp. 2165-2199, 11/01, 2014.
[37] C. Saha, and J. Y. Siddiqui, "A comparative analyis for split ring resonators of different geometrical shapes." pp. 1-4.
[38] D. R. Smith, W. Padilla, D. C. Vier, S. Nemat-Nasser, and S. Schultz, “Composite Medium with Simultaneously Negative Permeability and Permittivity,” Physical review letters, vol. 84, pp. 4184-7, 05/01, 2000.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98855-
dc.description.abstract裂環共振器可以被視為一個LC電路,可以根據不同的需求來設計出對應的共振頻率。裂環共振器的工作原理是透過外加的磁場產生電磁感應激發出共振模態。裂環共振器從二十世紀初發展至今已經是相當成熟了,從微波到紅外線都有所應用,像是我們常見的濾波器、吸收器。
由於無線通訊快速發展,訊號傳輸的速度越來越快並需要將不同系統傳輸過來的訊號整合在一起,過去影響不大的問題隨著通訊技術的快速發展逐漸明顯的干擾到元件或是系統整體的表現。濾波器因此越來越被重視,對於濾波器的要求也越來越嚴格。
本研究打算將目前只在模擬成功階段的可同時濾除Wifi 2.4GHz及Wifi 5GHz頻段訊號的用雙裂環共振器設計成的濾波器做實際的實驗。但由於實驗儀器本身的限制,因此將雙裂環共振器的作用頻段減為原本的1/3,也就是0.8GHz ~ 0.83GHz以及1.71GHz ~ 1.95GHz。並且我們發現,使用兩大兩小的結構相較於四個小的結構的雙裂環共振器串接在一起,在1.71GHz ~ 1.95GHz的頻段附近無論是-10dB還是-15dB頻寬都要來的寬。此外,我們成功將在0.8GHz ~ 0.83GHz以及1.71GHz ~ 1.95GHz所做的模擬結果實際實驗出來,並且與模擬的結果相差不大。
zh_TW
dc.description.abstractA split-ring resonator can be viewed as an LC circuit and can be designed to resonate at a specific frequency according to different requirements. The working principle of a split-ring resonator involves exciting resonance modes through an externally applied magnetic field. Split-ring resonators have matured considerably since the early twentieth century and have found applications ranging from microwaves to infrared, such as in common filters and absorbers.
With the rapid development of wireless communication, signal transmission speeds are increasing, and there is a need to integrate signals from different systems. Issues that previously had little impact are now gradually interfering with the performance of components or entire systems due to the rapid advancement in communication technology. Consequently, filters are becoming increasingly important, and the requirements for filters are becoming stricter.
In this study, we intend to experimentally validate a dual split-ring resonator designed as a filter that can simultaneously accommodate the Wi-Fi 2.4GHz and Wi-Fi 5GHz frequency bands, which has only been successfully simulated thus far. However, due to limitations of the experimental instrumentation, the operating frequency range of the dual split-ring resonator is reduced to one-third of the original, namely 0.8GHz to 0.83GHz and 1.71GHz to 1.95GHz. Additionally, we observed that using a configuration of two large and two small split-ring resonators connected together results in a wider-10dB or -15dB bandwidth near the 1.71GHz to 1.95GHz frequency range compared to using four small split-ring resonators. Furthermore, we successfully conducted experiments to validate the simulated results obtained at 0.8GHz to 0.83GHz and 1.71GHz to 1.95GHz, with the experimental results closely matching the simulated ones.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-08-19T16:27:43Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-08-19T16:27:43Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents口試委員會審定書 i
誌謝 ii
中文摘要 iii
ABSTRACT iv
目次 v
圖次 vii
表次 ix
第一章 緒論 1
1.1 文獻回顧 1
1.2 研究動機 5
1.3 論文架構 6
第二章 基本原理與研究方法 7
2.1諧振共模濾波器(R-CMF) 7
2.2裂環共振器 8
2.2.1 單裂環共振器(S-SRR) 8
2.2.2 雙裂環共振器( D-SRR) 9
2.2.3 雙裂環共振器串聯 14
2.3 電磁模擬軟體 16
第三章 雙裂環共振器的設計與模擬 18
3.1 設計流程 18
3.2 Wi-Fi 2.4 GHz和Wi-Fi 5 GHz頻段的雙裂環共振器 19
3.3 頻率調整的雙裂環共振器 22
3.4. 串接四個雙裂環共振器(LSLS) 27
第四章 實驗 34
4.1 實驗架構 34
4.1.1 實驗架構 34
4.1.2 對照與驗證 34
4.2 實驗結果 36
4.2.1 LSLS 41
4.2.2 結果討論 49
第五章 結論 50
參考文獻 51
-
dc.language.isozh_TW-
dc.subject諧振共模濾波器zh_TW
dc.subject雙裂環共振器zh_TW
dc.subjectresonant common mode filter(R-CMF)en
dc.subjectdouble split ring resonator (D-SSR)en
dc.title利用雙頻段雙裂環共振器抑制WiFi訊號所產生的電磁干擾zh_TW
dc.titleSuppression of Electromagnetic Interference from WiFi Signals Using Dual-Band Double-Split-Ring Resonatorsen
dc.typeThesis-
dc.date.schoolyear113-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee賴志賢;曾士綱zh_TW
dc.contributor.oralexamcommitteeChih-Hsien Lai;Shi-Kang Tsengen
dc.subject.keyword雙裂環共振器,諧振共模濾波器,zh_TW
dc.subject.keyworddouble split ring resonator (D-SSR),resonant common mode filter(R-CMF),en
dc.relation.page54-
dc.identifier.doi10.6342/NTU202504100-
dc.rights.note未授權-
dc.date.accepted2025-08-15-
dc.contributor.author-college電機資訊學院-
dc.contributor.author-dept電信工程學研究所-
dc.date.embargo-liftN/A-
Appears in Collections:電信工程學研究所

Files in This Item:
File SizeFormat 
ntu-113-2.pdf
  Restricted Access
3.1 MBAdobe PDF
Show simple item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved