Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 應用力學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98854
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor李世光zh_TW
dc.contributor.advisorChih-Kung Leeen
dc.contributor.author江元銘zh_TW
dc.contributor.authorYuan-Ming Chiangen
dc.date.accessioned2025-08-19T16:27:31Z-
dc.date.available2025-09-19-
dc.date.copyright2025-08-19-
dc.date.issued2025-
dc.date.submitted2025-08-13-
dc.identifier.citationGlobal Information. (2025). “Adaptive Optics Global Market Report 2025.” Global Information, Inc. https://www.gii.tw/report/tbrc1702681-adaptive-optics-global-market-report.html
EMERGEN Research. (2022). “Adaptive Optics Market, By Component (Wavefront Sensors, Deformable Mirrors, Control System), By Application (Microscopy, Laser Application, Ophthalmology), By End-Users (Biomedical, Military & Defense, Others), and By Region Forecast to 2030.” https://www.emergenresearch.com/industry-report/adaptive-optics-market
Zhang, Q., Hu, Q. I., Berlage, C., Kner, P., Judkewitz, B., Booth, M., & Ji, N. (2023). Adaptive optics for optical microscopy. Biomedical Optics Express, 14(4), 1732-1756.
Babcock, H. W. (1953). The possibility of compensating astronomical seeing. Publications of the Astronomical Society of the Pacific, 65(386), 229-236.
Davies, R., & Kasper, M. (2012). Adaptive optics for astronomy. Annual Review of Astronomy and Astrophysics, 50(1), 305-351.
Bleha Jr, W. P., & Lei, L. A. (2013). Advances in liquid crystal on silicon (LCOS) spatial light modulator technology. Display Technologies and Applications for Defense, Security, and Avionics VII, 8736, 47-54.
Bifano, T. (2011). MEMS deformable mirrors. Nature photonics, 5(1), 21-23.
Maurer, C., Jesacher, A., Bernet, S., & Ritsch‐Marte, M. (2011). What spatial light modulators can do for optical microscopy. Laser & Photonics Reviews, 5(1), 81-101.
Lazarev, G., Hermerschmidt, A., Krüger, S., & Osten, S. (2012). LCOS spatial light modulators: trends and applications. Optical Imaging and Metrology: Advanced Technologies, 1-29.
Bleha Jr, W. P., & Lei, L. A. (2013). Advances in liquid crystal on silicon (LCOS) spatial light modulator technology. Display Technologies and Applications for Defense, Security, and Avionics VII, 8736, 47-54.
Li, R., & Cao, L. (2019). Progress in phase calibration for liquid crystal spatial light modulators. Applied Sciences, 9(10), 2012.
Popoff, S. M., Gutiérrez-Cuevas, R., Bromberg, Y., & Matthés, M. W. (2024). A practical guide to digital micro-mirror devices (dmds) for wavefront shaping. Journal of Physics: Photonics, 6(4), 043001.
Rhisheekesan, A., Thomas, D., Ulahannan, J. P., & Damodarakurup, S. (2024). Review on digital holography techniques using digital micromirror device. Optics and Lasers in Engineering, 177, 108120.
Shatokhina, I., Hutterer, V., & Ramlau, R. (2020). Review on methods for wavefront reconstruction from pyramid wavefront sensor data. Journal of Astronomical Telescopes, Instruments, and Systems, 6(1), 010901-010901.
Bruning, J. H., Herriott, D. R., Gallagher, J. E., Rosenfeld, D. P., White, A. D., & Brangaccio, D. J. (1974). Digital wavefront measuring interferometer for testing optical surfaces and lenses. Applied optics, 13(11), 2693-2703.
Yang, S., & Zhang, G. (2018). A review of interferometry for geometric measurement. Measurement Science and Technology, 29(10), 102001.
Abbe, E. (1873). Beiträge zur Theorie des Mikroskops und der mikroskopischen Wahrnehmung. Archiv für mikroskopische Anatomie, 9(1), 413-468.
Saxena, M., Eluru, G., & Gorthi, S. S. (2015). Structured illumination microscopy. Advances in Optics and Photonics, 7(2), 241-275.
Helmchen, F., & Denk, W. (2005). Deep tissue two-photon microscopy. Nature methods, 2(12), 932-940.
Möckl, L., Lamb, D. C., & Bräuchle, C. (2014). Super-resolved fluorescence microscopy: Nobel Prize in Chemistry 2014 for Eric Betzig, Stefan Hell, and William E. Moerner. Angewandte Chemie International Edition, 53(51).
Liu, H. J., Lee, S. S., Lee, H. C., Huang, J. W., & Lee, C. K. (2024, May). Adopt digital micromirror devise (DMD) for wavefront correction and wavefront sensing in adaptive optical system. In Sensors and Smart Structures Technologies for Civil, Mechanical, and Aerospace Systems 2024 (Vol. 12949, pp. 282-294). SPIE.
劉宏哲(2024)。應用數位微鏡於自適應光學系統的波前感測與校正技術研究〔碩士論文,國立臺灣大學〕。華藝線上圖書館。https://doi.org/10.6342/NTU202403543
Gong, C., & Mehrl, D. (2014). Characterization of the digital micromirror devices. IEEE Transactions on Electron Devices, 61(12), 4210-4215.
Douglass, M. (2003, January). DMD reliability: a MEMS success story. In Reliability, Testing, and Characterization of Mems/Moems II (Vol. 4980, pp. 1-11). SPIE.
Palmer, C., & Loewen, E. G. (2005). Diffraction grating handbook.
Anselmi, F., Banerjee, A., & Albeanu, D. F. (2015). Patterned photostimulation in the brain. New Techniques in Systems Neuroscience, 235-270.
Sepulveda, R. N., & Krueger, R. (2011). Optical Aberrations and Wavefront Sensing. Adler’s Physiology of the Eye, 28-39.
Charman, W. N. (2005). Wavefront technology: past, present and future. Contact Lens and Anterior Eye, 28(2), 75-92.
Mello, G. R., Rocha, K. M., Santhiago, M. R., Smadja, D., & Krueger, R. R. (2012). Applications of wavefront technology. Journal of Cataract & Refractive Surgery, 38(9), 1671-1683.
Lakshminarayanan, V., & Fleck, A. (2011). Zernike polynomials: a guide. Journal of Modern Optics, 58(7), 545-561.
Zhang, X. (2014). Binary wavefront optimization for focusing light through scattering media (Doctoral dissertation, University of Georgia).
Wang, Z., Wang, S., Yang, P., & Xu, B. (2019). Three-wave radial shearing interferometer. Optics Letters, 44(8), 1996-1999.
Lee, W. H. (1979). Binary computer-generated holograms. Applied Optics, 18(21), 3661-3669.
Lee, W. H. (1974). Binary synthetic holograms. Applied optics, 13(7), 1677-1682.
Poon, T.-C., & Liu, J.-P. (2014). Types of holograms. In Introduction to Modern Digital Holography: With Matlab (pp. 59–78). chapter, Cambridge: Cambridge University Press.
Debnath, S. K., & Kothiyal, M. P. (2007). Experimental study of the phase-shift miscalibration error in phase-shifting interferometry: use of a spectrally resolved white-light interferometer. Applied Optics, 46(22), 5103-5109.
Creath, K. (1988). V phase-measurement interferometry techniques. In Progress in optics (Vol. 26, pp. 349-393). Elsevier.
林峻暉、李世光、吳光鐘(2003)。應用於光波前與物體表面變形檢測之創新剪影干涉儀之設計與建構。光學工程,(81),77-82。https://doi.org/10.30011/OE.200303.0009
García-Torales, G., Paez, G., Strojnik, M., Villa, J., Flores, J. L., & Alvarez, A. G. (2006). Experimental intensity patterns obtained from a 2D shearing interferometer with adaptable sensitivity. Optics communications, 257(1), 16-26.
林昕叡(2024)。一種新的剪切波前分析儀開發〔碩士論文,國立臺灣大學〕。華藝線上圖書館。https://doi.org/10.6342/NTU202403670
Karan, S., Ruchi, Mohta, P., & Jha, A. K. (2022). Quantifying polarization changes induced by rotating Dove prisms and K-mirrors. Applied Optics, 61(28), 8302-8307.
Herráez, M. A., Burton, D. R., Lalor, M. J., & Gdeisat, M. A. (2002). Fast two-dimensional phase-unwrapping algorithm based on sorting by reliability following a noncontinuous path. Applied optics, 41(35), 7437-7444.
Pritt, M. D., & Shipman, J. S. (1994). Least-squares two-dimensional phase unwrapping using FFT's. IEEE Transactions on geoscience and remote sensing, 32(3), 706-708.
Ghiglia, D. C., & Romero, L. A. (1994). Robust two-dimensional weighted and unweighted phase unwrapping that uses fast transforms and iterative methods. Journal of the Optical Society of America A, 11(1), 107-117.
Goldstein, R. M., Zebker, H. A., & Werner, C. L. (1988). Satellite radar interferometry: Two-dimensional phase unwrapping. Radio science, 23(4), 713-720.
Liang, P., Ding, J., Jin, Z., Guo, C. S., & Wang, H. T. (2006). Two-dimensional wave-front reconstruction from lateral shearing interferograms. Optics Express, 14(2), 625-634.
Tian, X., Itoh, M., & Yatagai, T. (1995). Simple algorithm for large-grid phase reconstruction of lateral-shearing interferometry. Applied optics, 34(31), 7213-7220.
Sarkar, S. (2022). Design, Alignment, and Usage of Infinity-Corrected Microscope. In Principles of Light Microscopy: From Basic to Advanced (pp. 17-56). Cham: Springer International Publishing.
Murphy, D. B., & Davidson, M. W. (2012). Fundamentals of light microscopy and electronic imaging. John Wiley & Sons.
Scholes, S., Kara, R., Pinnell, J., Rodríguez-Fajardo, V., & Forbes, A. (2020). Structured light with digital micromirror devices: a guide to best practice. Optical Engineering, 59(4), 041202-041202.
Bishop, K. W., Glaser, A. K., & Liu, J. T. (2020). Performance tradeoffs for single-and dual-objective open-top light-sheet microscope designs: a simulation-based analysis. Biomedical Optics Express, 11(8), 4627-4650.
Hasler, M., Haist, T., & Osten, W. (2012, May). SLM-based microscopy. In Optical Micro-and Nanometrology IV (Vol. 8430, pp. 258-265). SPIE.
Rossmann, K. (1969). Point spread-function, line spread-function, and modulation transfer function: tools for the study of imaging systems. Radiology, 93(2), 257-272.
Pech-Pacheco, J. L., Cristóbal, G., Chamorro-Martinez, J., & Fernández-Valdivia, J. (2000, September). Diatom autofocusing in brightfield microscopy: a comparative study. In Proceedings 15th International Conference on Pattern Recognition. ICPR-2000 (Vol. 3, pp. 314-317). IEEE.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98854-
dc.description.abstract自適應光學顯微技術(Adaptive Optics Microscopy)為自適應光學的重要應用之一,透過補償因光學元件造成的波前畸變,抑制光傳播過程中遇到的像差,從而提高對樣品觀察的解析度與銳利度。在自適應光學系統中,人們常選用可變形鏡與矽基液晶當作空間光調製器,而夏克-哈特曼波前感測器則常用於波前感測,以了解相差程度並進一步校正;然而,可變形鏡與矽基液晶有解析度、耐用度、更新率與適用波長的問題,夏克-哈特曼波前感測器也有採樣點的限制需要克服。
本研究顯微系統參考Olympus BX71的光路架構,透過聚光鏡增加光的使用效率,並在光路中的物鏡之後引入影像系統與波前校正系統,影像系統透過成像透鏡拍攝樣品影像,波前校正系統則是整合了型號為DLP 6500 BFYE的數位微鏡陣列與橫向剪切干涉儀設計而成。DLP 6500 BFYE具有1920×1080像素的高解析度與9523 Hz的高更新率,透過與電腦生成全像圖的結合進行高解析度可以更精準的補償波前,本研究中將這項特點應用在高階像差的校正。高更新率可加速剪切干涉的相移法進行,再透過二維剪切干涉與K-mirror的設計,達到使用單一剪切片進行二維的波前重建,並進一步進行波前校正,最後透過影像系統觀察影像品質的變化。
實驗結果顯示,無論是數位微鏡陣列的繞射模型探討、全像圖的原理與驗證、K-mirror對於影像旋轉與偏振態的需求、二維剪切干涉儀的量測與驗證和影像品質的提升,都達到了預期的效果。這套系統可以減少傳統剪切干涉儀因為相移法需要機械轉動造成的不穩定性,且在單純使用分光鏡、反射鏡與剪切片材料即完成干涉儀的架設,相較於夏克-哈特曼波前感測器有更好的經濟效益。
zh_TW
dc.description.abstractAdaptive Optics (AO) Microscopy stands as a crucial application of adaptive optics technology. It effectively compensates for wavefront distortions introduced by optical elements, thereby suppressing aberrations during light propagation. This ultimately leads to a significant improvement in both the resolution and sharpness of sample images. In the Adaptive Optics system, deformable mirrors and Liquid Crystal on Silicon devices are commonly chosen for spatial light modulation and are used to correct wavefront distortion. In order to determine the wavefront’s condition and the needed correction, the Shack-Hartmann wavefront sensor plays an important role. However, both deformable mirrors and Liquid Crystal on Silicon devices face inherent limitations in terms of resolution, durability, refresh rate, and wavelength range that need to be overcome. Similarly, the Shack-Hartmann wavefront sensor is restricted by its sampling points.
The optical path architecture of the microscope system in this research is based on the OLYMPUS BX71 microscope. A condenser is introduced to enhance light efficiency. Following the objective lens, an imaging system and a wavefront correction system have been integrated into the optical path. The imaging system captures sample images via an imaging lens and the wavefront correction system is combined with DLP 6500 BFYE Digital Micromirror Device and a lateral shearing interferometer. The DLP 6500 BFYE has a high resolution of 1920x1080 pixels and a rapid refresh rate of 9523 Hz. If the computer-generated holograms are combined, the high resolution enables more precise wavefront compensation so the high-order aberration can be corrected in this research. Moreover, the fast refresh rate accelerates measuring rate of the phase-shifting method used in shearing interferometry. Through a design incorporating two-dimensional shearing interferometry and a K-mirror, the system has achieved two-dimensional wavefront reconstruction and wavefront correction by using a single shear plate. Finally, the changes in image quality has been observed through the imaging system.
The experimental results confirmed that all aspects of the system performed as expected. This includes the exploration of the digital micromirror device's diffraction model, the principles and validation of holograms, the requirements of image rotation and polarization state through the K-mirror, the measurements and validation of the two-dimensional shearing interferometer, and the improvement in image quality. Furthermore, this system effectively reduces the instability typically associated with the mechanical rotation required for phase-shifting in traditional shearing interferometers. Besides, by simply utilizing beamsplitters, mirrors, and shearing elements to construct the interferometer, the developed system offers a more economical solution compared to Shack-Hartmann wavefront sensors.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-08-19T16:27:31Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-08-19T16:27:31Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents誌謝 i
摘要 ii
Abstract iii
目次 v
圖次 viii
表次 xi
第1章 緒論 1
1.1 研究動機 1
1.2 文獻回顧 2
1.2.1 自適應光學 2
1.2.2 空間光調製器 3
1.2.3 波前感測器 6
1.2.4 自適應光學顯微鏡 7
1.3 研究目標 9
1.4 論文架構 9
第2章 數位微鏡陣列用於波前校正與輔助剪切干涉 11
2.1 數位微鏡陣列的繞射原理 11
2.1.1 DMD結構介紹 11
2.1.2 DMD繞射模型 12
2.2 波前校正原理 17
2.2.1 波前像差 17
2.2.2 二進制全像術發展 20
2.2.3 李全像術(Lee Hologram Method) 22
2.2.4 離軸全像圖的波前資訊 24
2.3 橫向剪切干涉儀原理 26
2.3.1 影響干涉的要件 26
2.3.2 橫向剪切干涉原理 27
2.3.3 相位移法 29
第3章 二維剪切干涉儀的波前感測與顯微系統 35
3.1 二維剪切干涉儀設計 35
3.1.1 二維剪切干涉儀 35
3.1.2 應用於剪切干涉儀中的影像旋轉系統概述 38
3.1.3 影像旋轉系統的傳輸矩陣分析 39
3.1.4 影像旋轉系統的偏振態變化 40
3.2 相位重建演算法 42
3.2.1 相位展開 42
3.2.2 波前重建 47
3.3 自適應光學顯微系統 51
3.3.1 顯微系統設計 51
3.3.2 結合自適應光學的顯微鏡系統 54
3.3.3 解析度與銳利度檢驗 55
第4章 實驗架構設計 58
4.1 干涉儀系統架構 58
4.1.1 數位微鏡陣列輔助橫向剪切干涉儀 58
4.1.2 光路分析 59
4.1.3 元件規格與干涉儀驗證 59
4.2 自適應光學顯微鏡 62
4.2.1 系統架構 62
第5章 實驗結果與分析 64
5.1 K-mirror的影像旋轉測試 64
5.1.1 Code V模擬K-mirror影像旋轉 64
5.1.2 實驗觀察K-mirror影像旋轉 65
5.2 全像圖驗證結果 65
5.2.1 經DMD繞射之光點形狀探討 65
5.2.2 全像圖驗證 67
5.3 干涉儀驗證結果 73
5.3.1 中心範圍重建結果比較 73
5.3.2 完整波前重建結果比較 75
5.4 校正結果與顯微影像分析 77
5.4.1 校正結果分析 77
5.4.2 顯微影像與銳利度分析 78
第6章 結論與未來展望 81
6.1 結論 81
6.2 未來展望 82
References 83
-
dc.language.isozh_TW-
dc.subject二維剪切干涉儀zh_TW
dc.subject自適應光學顯微技術zh_TW
dc.subject夏克-哈特曼波前感測器zh_TW
dc.subject波前感測zh_TW
dc.subject數位微鏡陣列zh_TW
dc.subjectAdaptive Optics Microscopyen
dc.subjectwavefront sensingen
dc.subjectDigital Micromirror Deviceen
dc.subjectShack-Hartmann wavefront sensorsen
dc.subjecttwo-dimensional shearing interferometeren
dc.title基於數位微鏡陣列的自適應光學顯微鏡開發研究zh_TW
dc.titleDeveloping of an Adaptive Optical Microscope Based on Digital Micromirrors Device (DMD)en
dc.typeThesis-
dc.date.schoolyear113-2-
dc.description.degree碩士-
dc.contributor.coadvisor吳光鐘zh_TW
dc.contributor.coadvisorKuang-Chong Wuen
dc.contributor.oralexamcommittee黃君偉;李舒昇;李翔傑zh_TW
dc.contributor.oralexamcommitteeJiun-Woei Huang;Shu-Sheng Lee;Hsiang-Chieh Leeen
dc.subject.keyword自適應光學顯微技術,二維剪切干涉儀,波前感測,夏克-哈特曼波前感測器,數位微鏡陣列,zh_TW
dc.subject.keywordAdaptive Optics Microscopy,two-dimensional shearing interferometer,wavefront sensing,Shack-Hartmann wavefront sensors,Digital Micromirror Device,en
dc.relation.page87-
dc.identifier.doi10.6342/NTU202504270-
dc.rights.note未授權-
dc.date.accepted2025-08-15-
dc.contributor.author-college工學院-
dc.contributor.author-dept應用力學研究所-
dc.date.embargo-liftN/A-
顯示於系所單位:應用力學研究所

文件中的檔案:
檔案 大小格式 
ntu-113-2.pdf
  未授權公開取用
7.28 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved