請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98850完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 張秉純 | zh_TW |
| dc.contributor.advisor | Biing-Chwen Chang | en |
| dc.contributor.author | 劉乃瑜 | zh_TW |
| dc.contributor.author | Nai-Yu Liu | en |
| dc.date.accessioned | 2025-08-19T16:26:37Z | - |
| dc.date.available | 2025-08-20 | - |
| dc.date.copyright | 2025-08-19 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-08-07 | - |
| dc.identifier.citation | [1] Dall, Philippa M. Frequency of the sit to stand task: An observational study of free-living adults. Applied Ergonomics, 41(1):58–61, 2010.
[2] Inge H. Bruun, Thomas Maribo, Birgitte Nørgaard, Berit Schiøttz-Christensen and Christian B. Mogensen. A prediction model to identify hospitalised, older adults with reduced physical performance. BMC Geriatrics, 17(1):281, 2017. [3] Ronny Bergquist, Michaela Weber, Michael Schwenk, Synnøve Ulseth, Jorunn L. Helbostad, Beatrix Vereijken and Kristin Taraldsen. Performance-based clinical tests of balance and muscle strength used in young seniors: a systematic literature review. BMC Geriatrics, 19(1):9, 2019. [4] 洪嘉玲、廖麗君、張祐誠、嚴成文. 發展中風病患從坐到站其雙腳承重對稱性與轉移能力之力學指標. 物理治療, 42(4):323–323, 2017. [5] Cheng, Pao-Tsai, Liaw, Mei-Yun, Wong, May-Kuen, Tang, Fuk-Tan, Lee, Ming-Yih and Lin, Pay-Shin. The sit-to-stand movement in stroke patients and its correlation with falling. 物理治療, 79(9):1043–1046, 1998. [6] Marcia J Scherer. Assessing the benefits of using assistive technologies and other supports for thinking, remembering and learning. Disability and Rehabilitation, 27(13):731–739, 2005. [7] Jang, Eun-Mi and Yoo, Won-Gyu. Comparison of the gluteus medius and rectus femoris muscle activities during natural sit-to-stand and sit-to-stand with hip abduction in young and older adults. Journal of Physical Therapy Science, 27(2):375–376, 2015. [8] 洪嘉玲、張祐誠、嚴成文、陳嘉炘、廖麗君. 利用不同力板參數檢測輕微偏癱中風患者從坐到站之兩腳承重分布與花費時間. 物理治療, 45(1):24–39, 2020. [9] 蕭淑芬, 林家弘, 王亭貴, 古世基, and 陳佳慧. 淺談坐到站—評估病人身體活動功能的重要指標. 台灣老年醫學暨老年學會雜誌, 15(1):1–10, 2020. [10] Andrew Kerr, Allan Clark, Emma V Cooke, Philip Rowe, and VM Pomeroy. Functional strength training and movement performance therapy produce analogous improvement in sit-to-stand early after stroke: early-phase randomised controlled trial. Physiotherapy, 103(3):259–265, 2017. [11] Hao Xiong and Xiumin Diao. A review of cable-driven rehabilitation devices. Disability and Rehabilitation: Assistive Technology, 15(8):885–897, 2020. [12] 安德復復建專科診所. 中風復健-坐到站訓練. [13] Katja Mombaur and Khai-Long Ho Hoang. How to best support sit to stand transfers of geriatric patients: Motion optimization under external forces for the design of physical assistive devices. Journal of Biomechanics, 58:131–138, 2017. [14] Ontario Home Health. Powered sit to stand lifts. [15] Canjun Yang, Linfan Yu, Linghui Xu, Zehao Yan, Dongming Hu, Sheng Zhang, and Wei Yang. Current developments of robotic hip exoskeleton toward sensing, decision, and actuation: A review. Wearable Technologies, 3:e15, 2022. [16] Hao Lee, Peter Walker Ferguson, and Jacob Rosen. Lower limb exoskeleton systems — overview. Wearable Robotics, pages 207–229, 2020. [17] RARC Gopura, DSV Bandara, Kazuo Kiguchi, and George KI Mann. Developments in hardware systems of active upper-limb exoskeleton robots: A review. Robotics and Autonomous Systems, 75:203–220, 2016. [18] Jingli Du and Sunil K Agrawal. Dynamic modeling of cable-driven parallel manipulators with distributed mass flexible cables. Journal of Vibration and Acoustics, 137(2):021020, 2015. [19] Hiroaki Kawamoto, Stefan Taal, Hafid Niniss, Tomohiro Hayashi, Kiyotaka Kamibayashi, Kiyoshi Eguchi, and Yoshiyuki Sankai. Voluntary motion support control of robot suit HAL triggered by bioelectrical signal for hemiplegia. In 2010 Annual International Conference of the IEEE Engineering in Medicine and Biology, pages 462–466. IEEE, 2010. [20] Hiroki Watanabe, Naoki Tanaka, Tomonari Inuta, Hideyuki Saitou, and Hisako Yanagi. Locomotion improvement using a hybrid assistive limb in recovery phase stroke patients: a randomized controlled pilot study. Archives of Physical Medicine and Rehabilitation, 95(11):2006–2012, 2014. [21] Atsushi Tsukahara, Ryota Kawanishi, Yasuhisa Hasegawa, and Yoshiyuki Sankai. Sit-to-stand and stand-to-sit transfer support for complete paraplegic patients with robot suit HAL. Advanced Robotics, 24(11):1615–1638, 2010. [22] Karen Junius, Branko Brackx, Victor Grosu, Heidi Cuypers, Joost Geeroms, Marta Moltedo, Bram Vanderborght, and Dirk Lefeber. Mechatronic design of a sit-to-stance exoskeleton. In 5th IEEE RAS/EMBS International Conference on Biomedical Robotics and Biomechatronics, pages 945–950. IEEE, 2014. [23] Xin Jin, Xiang Cui, and Sunil K Agrawal. Design of a cable-driven active leg exoskeleton (c-ALEX) and gait training experiments with human subjects. In 2015 IEEE International Conference on Robotics and Automation (ICRA), pages 5578–5583. IEEE, 2015. [24] Zlatko Matjačić, Matjaž Zadravec, and Jakob Oblak. Sit-to-stand trainer: an apparatus for training “normal-like” sit to stand movement. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 24(6):639–649, 2015. [25] ME Roebroeck, CAM Doorenbosch, J Harlaar, R Jacobs, and GJ Lankhorst. Biomechanics and muscular activity during sit-to-stand transfer. Clinical Biomechanics, 9(4):235–244, 1994. [26] Darl W Vander Linden, Denis Brunt, and Marina U McCulloch. Variant and invariant characteristics of the sit-to-stand task in healthy elderly adults. Archives of Physical Medicine and Rehabilitation, 75(6):653–660, 1994. [27] Melanie J Lomaglio and Janice J Eng. Muscle strength and weight-bearing symmetry relate to sit-to-stand performance in individuals with stroke. Gait & Posture, 22(2):126–131, 2005. [28] Margaret Schenkman, Richard A Berger, Patrick O Riley, Robert W Mann, and W Andrew Hodge. Whole-body movements during rising to standing from sitting. Physical Therapy, 70(10):638–648, 1990. [29] Patrick O Riley, David E Krebs, and Rita A Popat. Biomechanical analysis of failed sit-to-stand. IEEE Transactions on Rehabilitation Engineering, 5(4):353–359, 1997. [30] Donna Moxley Scarborough, Chris A McGibbon, and David E Krebs. Chair rise strategies in older adults with functional limitations. Journal of Rehabilitation Research and Development, 44(1):33, 2007. [31] Jeswin Jeyasurya, HF Machiel Van der Loos, Antony Hodgson, and Elizabeth A Croft. Comparison of seat, waist, and arm sit-to-stand assistance modalities in elderly population. Journal of Rehabilitation Research and Development, 50(6):835–844, 2013. [32] Seung-Won Kim, Jiyoen Song, Seungbeum Suh, Woosub Lee, and Sungchul Kang. Design and experiment of a passive sit-to-stand and walking (STSW) assistance device for the elderly. In 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pages 1781–1784. IEEE, 2018. [33] Stephen Ashford and Lorraine De Souza. A comparison of the timing of muscle activity during sitting down compared to standing up. Physiotherapy Research International, 5(2):111–128, 2000. [34] Pao-Tsai Cheng, Chia-Ling Chen, Chin-Man Wang, and Wei-Hsien Hong. Leg muscle activation patterns of sit-to-stand movement in stroke patients. American Journal of Physical Medicine & Rehabilitation, 83(1):10–16, 2004. [35] Yang-An Li, Ze-Jian Chen, Chang He, Xiu-Pan Wei, Nan Xia, Ming-Hui Gu, Cai-Hua Xiong, Qin Zhang, Trisha M Kesar, Xiao-Lin Huang, et al. Exoskeleton-assisted sit-to-stand training improves lower-limb function through modifications of muscle synergies in subacute stroke survivors. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 31:3095–3105, 2023. [36] Eun-Mi Jang and Won-Gyu Yoo. Comparison of the gluteus medius and rectus femoris muscle activities during natural sit-to-stand and sit-to-stand with hip abduction in young and older adults. Journal of Physical Therapy Science, 27(2):375–376, 2015. [37] At L Hof, MGJ Gazendam, and WE Sinke. The condition for dynamic stability. Journal of Biomechanics, 38(1):1–8, 2005. [38] 勞動及職業安全衛生研究所全球資訊網. Study on anthropometry and push-pull strength. 2019. [39] ROBOTICS. Robotis e. [40] DFROBOT. Ser0060 specifications. [41] B Siepert. Adafruit 9–dof orientation imu fusion breakout–bno085. [42] Arduino Official Store. Arduino mega 2560 rev3. [43] David Park. Dynamixel shield introduction. [44] IC SHOPPING. Cp2102 模組 usb 轉 ttl. [45] Electro Proto. Régulateur dc-dc step down mp1584 3a sortie ajustable. [46] MERCK. Muscular system. [47] Ge Wu, Sorin Siegler, Paul Allard, Chris Kirtley, Alberto Leardini, Dieter Rosenbaum, Mike Whittle, Darryl D D’Lima, Luca Cristofolini, Hartmut Witte, et al. ISB recommendation on definitions of joint coordinate system of various joints for the reporting of human joint motion—part I: ankle, hip, and spine. Journal of Biomechanics, 35(4):543–548, 2002. [48] Lung-Wen Tsai. Robot analysis: the mechanics of serial and parallel manipulators. John Wiley & Sons, 1999. [49] Catherine A Stevermer and Jason C Gillette. Kinematic and kinetic indicators of sit-to-stand. Journal of Applied Biomechanics, 32(1):7–15, 2016. [50] Woohyoung Jeon, Jody L Jensen, and Lisa Griffin. Muscle activity and balance control during sit-to-stand across symmetric and asymmetric initial foot positions in healthy adults. Gait & Posture, 71:138–144, 2019. [51] Mohamed Amine Alouane, Weiguang Huo, Hala Rifai, Yacine Amirat, and Samer Mohammed. Hybrid FES-exoskeleton controller to assist sit-to-stand movement. IFAC-PapersOnLine, 51(34):296–301, 2019. [52] Diego Felipe Paez Granados, Hideki Kadone, and Kenji Suzuki. Unpowered lower-body exoskeleton with torso lifting mechanism for supporting sit-to-stand transitions. In 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pages 2755–2761. IEEE, 2018. [53] Judith M Burnfield, Bernadette McCrory, Yu Shu, Thad W Buster, Adam P Taylor, and Amy J Goldman. Comparative kinematic and electromyographic assessment of clinician-and device-assisted sit-to-stand transfers in patients with stroke. Physical Therapy, 93(10):1331–1343, 2013. [54] Yu Rong Mao, Xiu Qin Wu, Jiang Li Zhao, Wai Leung Ambrose Lo, Ling Chen, Ming Hui Ding, Zhi Qin Xu, Rui Hao Bian, Dong Feng Huang, and Le Li. The crucial changes of sit-to-stand phases in subacute stroke survivors identified by movement decomposition analysis. Frontiers in Neurology, 9:185, 2018. [55] Woohyoung Jeon, Jill Whitall, Lisa Griffin, and Kelly P Westlake. Trunk kinematics and muscle activation patterns during stand-to-sit movement and the relationship with postural stability in aging. Gait & Posture, 86:292–298, 2021. [56] Lance M Bollinger and Amanda L Ransom. The association of obesity with quadriceps activation during sit-to-stand. Physical Therapy, 100(12):2134–2143, 2020. [57] Abhishek Srivastava, Arun B Taly, Anupam Gupta, Senthil Kumar, and Thyloth Murali. Post-stroke balance training: role of force platform with visual feedback technique. Journal of the Neurological Sciences, 287(1–2):89–93, 2009. [58] Andy Kerr, Jesse Dawson, Chris Robertson, Philip Rowe, and Terence J Quinn. Sit to stand activity during stroke rehabilitation. Topics in Stroke Rehabilitation, 24(8):562–566, 2017. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98850 | - |
| dc.description.abstract | 坐到站是日常生活中頻繁進行的動作,不僅是評估身體協調、平衡能力的重要指標,也常作為預測跌倒風險的依據。此動作需在短時間內完成大幅度的重心轉移,同時縮小支撐基底,高度仰賴下肢與軀幹的協調能力,因此下肢肌力不足的老年人或神經損傷患者(如中風患者),往往需依賴外部輔助支撐。其中中風患者常見的雙側不平衡負重問題,不僅大幅提升坐到站轉移時的跌倒風險,更嚴重影響其獨立生活的能力。
傳統輔助方式對照護者造成體力負擔,而現有器材常受限於使用空間或因剛性結構影響動作表現,且難以根據個體需求調整輔助策略,因此有必要開發穿戴舒適、輕量化且可個人化調整的穿戴式輔助裝置。 本研究旨在開發一款軟性穿戴式坐站輔助裝置,設計配合坐到站動作的階段性控制策略,並參考傳統輔助的力傳遞機制,透過馬達與纜線提供精準且可調整的輔助力,以達到輔助與訓練的雙重目的。研究首先針對坐到站的生物力學進行動作分析,並提出以運動學指標評估中風患者側向動態平衡表現的方法。裝置的評估實驗分為前測、短期訓練與後測三個階段,透過十六個表面肌電訊號感測器量測後背至下肢肌肉的激發強度變化,並利用動作捕捉系統分析裝置對關節角度範圍的影響,以此綜合衡量裝置的短期訓練效果。 實驗結果顯示,在訓練過程中使用者的股二頭肌與股外側肌平均激發強度顯著降低,且關節活動度未受裝置限制。這證明本裝置能有效輔助坐站動作,降低肌肉負擔,提升訓練效率與效果,為未來的復健與照護領域提供新的解決方案。 | zh_TW |
| dc.description.abstract | The sit-to-stand (STS) movement is a common daily task and a key indicator of physical coordination, balance, and fall risk. It requires rapid shift of center of mass (COM) and a reduction in base of support (BoS), placing high demands on lower extremities and trunk control. Older adults and individuals with neuromuscular impairments, such as stroke survivors, often need external assistance. Stroke-related asymmetrical weight-bearing further elevates fall risk and impairs independence.
Conventional assistive methods can strain caregivers, while existing equipment often limits movement or lack adaptability. To address these, this study presents a lightweight, wearable motor-cable-driven exosuit that delivers adjustable assistive force with a phase-dependent control strategy, aiming to provide both assistance and training functionality. The study included a biomechanical analysis of STS and proposed a kinematic method to assess dynamic lateral stability in stroke patients. Device efficacy was evaluated across pre-test, training and post-test using sixteen surface electromyography (EMG) sensors for muscle activity and a motion capture system to assess joint kinematics. Results showed significant reductions in biceps femoris and vastus lateralis activation during short-term training, with no restriction in joint range of motion. These findings indicate that the exosuit effectively reduces muscular demand without disrupting natural biomechanics, enhancing the efficiency of STS training. This wearable solution offers promising potential for rehabilitation and elderly care applications. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-08-19T16:26:37Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-08-19T16:26:37Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | Contents
口試委員審定書 i 誌謝 ii 摘要 iii Abstract iv Contents v List of Figures viii List of Tables x List of Symbols xi Chapter 1 Introduction 1 1.1 Background and Motivation . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Literature Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.2.1 Sit-to-Stand in Impaired Populations . . . . . . . . . . . . . . 2 1.2.2 Conventional Rehabilitation Methods . . . . . . . . . . . . . . 4 1.2.3 Overview of Lower Limb Exoskeletons . . . . . . . . . . . . . 5 1.2.4 Review of Selected Studies . . . . . . . . . . . . . . . . . . . 6 1.3 Research Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 Chapter 2 Biomechanics of STS Movement 13 2.1 Background and Motor Strategies . . . . . . . . . . . . . . . . . . . . 13 2.1.1 Phases of the STS Movement and Chair-Rise Strategies . . . . 13 2.1.2 Muscle Activation Patterns during STS . . . . . . . . . . . . . 17 2.2 Kinematics of STS Transitions . . . . . . . . . . . . . . . . . . . . . 18 2.3 Stability Characteristics in Stroke Survivors . . . . . . . . . . . . . . 19 2.3.1 Materials and Methods . . . . . . . . . . . . . . . . . . . . . . 20 2.3.2 Data Processing . . . . . . . . . . . . . . . . . . . . . . . . . 20 2.3.3 Dynamic Stability Analysis . . . . . . . . . . . . . . . . . . . 22 2.3.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 2.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 Chapter 3 System Design 28 3.1 Hip Assist Force for Sit-to-Stand . . . . . . . . . . . . . . . . . . . . 28 3.2 Device Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 3.2.1 Cable Direction Control Mechanism . . . . . . . . . . . . . . 32 3.2.2 Trunk Flexion Assistance . . . . . . . . . . . . . . . . . . . . 33 3.2.3 Knee Extension Assistance . . . . . . . . . . . . . . . . . . . 35 3.2.4 Motor Fixture and Cable Winding . . . . . . . . . . . . . . . . 36 3.3 Electronics and Control Hardware . . . . . . . . . . . . . . . . . . . . 37 3.3.1 Cable Winding Motor Configuration . . . . . . . . . . . . . . 37 3.3.2 Sensors and Servo Motors . . . . . . . . . . . . . . . . . . . . 38 3.3.3 Microcontrollers . . . . . . . . . . . . . . . . . . . . . . . . . 39 3.3.4 Power Supply and Wiring . . . . . . . . . . . . . . . . . . . . 39 3.4 Control Strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 3.5 Motor Characterization and Force Calibration . . . . . . . . . . . . . 44 Chapter 4 Device Evaluation 47 4.1 Experiment Setup and Procedure . . . . . . . . . . . . . . . . . . . . 47 4.2 Data Processing and Analysis . . . . . . . . . . . . . . . . . . . . . . 51 4.2.1 Data Processing . . . . . . . . . . . . . . . . . . . . . . . . . 51 4.2.2 Segmental Coordinate Systems and Joint Angle Derivation . . 53 4.2.3 Movement Phase Normalization and Event Detection . . . . . 56 4.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 4.3.1 Kinematic Results and STS Duration . . . . . . . . . . . . . . 58 4.3.2 Muscular Activity . . . . . . . . . . . . . . . . . . . . . . . . 63 4.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 Chapter 5 Conclusion and Future Work 74 Reference 76 Appendix A — Supplementary Results 84 A.1 Kinematics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 A.2 EMG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 A.2.1 Mean Activation Level . . . . . . . . . . . . . . . . . . . . . 85 A.2.2 Peak Activation Level . . . . . . . . . . . . . . . . . . . . . . 86 A.2.3 Peak Activation Timing . . . . . . . . . . . . . . . . . . . . . 87 | - |
| dc.language.iso | en | - |
| dc.subject | 外骨骼 | zh_TW |
| dc.subject | 坐到站輔助 | zh_TW |
| dc.subject | 動作分析 | zh_TW |
| dc.subject | 線驅動機構 | zh_TW |
| dc.subject | 肌電訊號分析 | zh_TW |
| dc.subject | exoskeleton | en |
| dc.subject | sit-to-stand training | en |
| dc.subject | motion analysis | en |
| dc.subject | cable-driven mechanism | en |
| dc.subject | EMG analysis | en |
| dc.title | 應用於坐站訓練之線驅動下肢軟性外骨骼開發 | zh_TW |
| dc.title | Development of a Cable-Driven Lower-Limb Exosuit for Sit-to-Stand Training | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 李宇修;梁蕙雯 | zh_TW |
| dc.contributor.oralexamcommittee | Yu-Hsiu Lee;Huey-Wen Liang | en |
| dc.subject.keyword | 外骨骼,坐到站輔助,動作分析,線驅動機構,肌電訊號分析, | zh_TW |
| dc.subject.keyword | exoskeleton,sit-to-stand training,motion analysis,cable-driven mechanism,EMG analysis, | en |
| dc.relation.page | 90 | - |
| dc.identifier.doi | 10.6342/NTU202503271 | - |
| dc.rights.note | 同意授權(限校園內公開) | - |
| dc.date.accepted | 2025-08-13 | - |
| dc.contributor.author-college | 工學院 | - |
| dc.contributor.author-dept | 機械工程學系 | - |
| dc.date.embargo-lift | 2026-09-01 | - |
| 顯示於系所單位: | 機械工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-2.pdf 未授權公開取用 | 11.31 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
