請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98847完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 張明輝 | zh_TW |
| dc.contributor.advisor | Ming-Huei Chang | en |
| dc.contributor.author | 簡佳宣 | zh_TW |
| dc.contributor.author | Chia-Hsuan Chien | en |
| dc.date.accessioned | 2025-08-19T16:25:57Z | - |
| dc.date.available | 2025-08-20 | - |
| dc.date.copyright | 2025-08-19 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-08-12 | - |
| dc.identifier.citation | Alford, M. H., Peacock, T., MacKinnon, J. et al. (2015). The formation and fate of internal waves in the South China Sea. Nature 521, 65–69.
Alford, M. H., Lien, R. C., Simmons, H., Klymak, J., Ramp, S., Yang, Y. J., ... & Chang, M. H. (2010). Speed and evolution of nonlinear internal waves transiting the South China Sea. Journal of Physical Oceanography, 40(6), 1338-1355. Bai, X., Liu, Z., Li, X., & Hu, J. (2014). Generation sites of internal solitary waves in the southern Taiwan Strait revealed by MODIS true-colour image observations. International Journal of Remote Sensing, 35(11–12), 4086–4098. Bai, X., Li, X., Lamb, K. G., & Hu, J. (2017). Internal solitary wave reflection near Dongsha Atoll, the South China Sea. Journal of Geophysical Research: Oceans, 122, 7978–7991. Cai, S., Xie, J., Xu, J., Wang, D., Chen, Z., Deng, X., & Long, X. (2014). Monthly variation of some parameters about internal solitary waves in the South China Sea. Deep Sea Research Part I: Oceanographic Research Papers, 84, 73-85. Chang, M.-H., Cheng, Y.-H., Yang, Y. J., Jan, S., Ramp, S. R., Reeder, D. B., Hsieh, W.-T., Ko, D. S., Davis, K. A., Shao, H.-J., & Tseng, R.-S. (2021). Direct measurements reveal instabilities and turbulence within large amplitude internal solitary waves beneath the ocean. Commun Earth Environ 2, 15. Chang, M.-H., Lien, R.-C., Yang, Y. J., Tang, T. Y., & Wang, J. (2008). A Composite View of Surface Signatures and Interior Properties of Nonlinear Internal Waves: Observations and Applications. Journal of Atmospheric and Oceanic Technology, 25(7), 1218-1227. Cheng, Y. H., Chang, M. H., Yang, Y. J., Jan, S., Ramp, S. R., Davis, K. A., & Reeder, D. B. (2024). Insights into internal solitary waves east of Dongsha Atoll from integrating geostationary satellite and mooring observations. Journal of Geophysical Research: Oceans, 129(8), e2024JC021109. Chen B-F, Huang Y-J. The Close Relationship between Internal Wave and Ocean Free Surface Wave. Journal of Marine Science and Engineering. 2021; 9(12):1330. Chen, C. Y., Hsu, J. R. C., Cheng, M. H., Chen, H. H., & Kuo, C. F. (2007). An investigation on internal solitary waves in a two-layer fluid: propagation and reflection from steep slopes. Ocean Engineering, 34(1), 171-184. Dunphy, M., Subich, C., & Stastna, M. (2011). Spectral methods for internal waves: indistinguishable density profiles and double-humped solitary waves. Nonlinear Processes in Geophysics, 18(3), 351-358. Gong, Y., Chen, X., Xu, J., Xie, J., Chen, Z., He, Y., & Cai, S. (2023). An internal solitary wave forecasting model in the northern South China Sea (ISWFM-NSCS). Geoscientific Model Development Discussions, 2023, 1-33. Grimshaw, R., Pelinovsky, E., Talipova, T., & Kurkin, A. (2004). Simulation of the transformation of internal solitary waves on oceanic shelves. Journal of physical oceanography, 34(12), 2774-2791. Jackson, C. R. (2009). An empirical model for estimating the geographic location of nonlinear internal solitary waves. Journal of Atmospheric and Oceanic Technology, 26(10), 2243-2255. Moore, S. E., & Lien, R. C. (2007). Pilot whales follow internal solitary waves in the South China Sea. Marine mammal science, 23(1), 193-196. Osborne, A. R., & Burch, T. L. (1980). Internal Solitons in the Andaman Sea. Science 208, 451-460. Pai, S. C., Jan, S., Ho, T. Y., Liu, J. Y., Chu, K. S., Lee, W. H., ... & Yang, Y. J. (2017). Using major nutrient concentrations to derive vertical movement of water masses in the coastal region of eastern Taiwan. Journal of Oceanography, 73(6), 711-723. Qiu, B., Chen, S., Wang, J., & Fu, L. L. (2024). Seasonal and fortnight variations in internal solitary waves in the Indonesian Seas from the SWOT measurements. Journal of Geophysical Research: Oceans, 129(7), e2024JC021086. Ramp, S. R., Tang, T. Y., Duda, T. F., Lynch, J. F., Liu, A. K., Chiu, C. S., ... & Yang, Y. J. (2004). Internal solitons in the northeastern South China Sea. Part I: Sources and deep water propagation. IEEE Journal of Oceanic Engineering, 29(4), 1157-1181. Ramp, S. R., Park, J. H., Yang, Y. J., Bahr, F. L., & Jeon, C. (2019). Latitudinal structure of solitons in the South China Sea. Journal of Physical Oceanography, 49(7), 1747-1767. Ramp, S. R., Yang, Y. J., Jan, S., Chang, M. H., Davis, K. A., Sinnett, G., ... & Pawlak, G. (2022). Solitary waves impinging on an isolated tropical reef: Arrival patterns and wave transformation under shoaling. Journal of Geophysical Research: Oceans, 127(3), e2021JC017781. Ramp, S. R., Yang, Y. J., Chiu, C. S., Reeder, D. B., & Bahr, F. L. (2022). Observations of shoaling internal wave transformation over a gentle slope in the South China Sea. Nonlinear Processes in Geophysics, 29(3), 279-299. Ray, R. D., & Mitchum, G. T. (1997). Surface manifestation of internal tides in the deep ocean: Observations from altimetry and island gauges. Progress in Oceanography, 40(1-4), 135-162. Santos-Ferreira, A.M., da Silva, J.C.B., Magalhaes, J.M., Amraoui, S., Moreau, T., Maraldi, C., Boy, F., Picot, N., & Borde, F. (2022). Effects of Surface Wave Breaking Caused by Internal Solitary Waves in SAR Altimeter: Sentinel-3 Copernicus Products and Advanced New Products. Remote Sens. 14, 587. Shen, H., Perrie, W., & Johnson, C. L. (2020). Predicting internal solitary waves in the Gulf of Maines. Journal of Geophysical Research: Oceans, 125, e2019JC015941. Simmons, H., Chang, M.-H., Chang, Y.-T., Chao, S.-Y., Fringer, O., Jackson, C. R., & Ko, D. S. (2011). Modeling and Prediction of Internal Waves in the South China Sea. Oceanography, 24(4), 88-99. Smyth, W. D., Moum, J. N., & Nash, J. D. (2010). Narrowband, high-frequency oscillations at the equator. Part II: properties of shear instabilities. J. Phys. Oceanogr, 41, 412-428. Smyth, W. D., & Carpenter, J. R. (2019). Instability in geophysical flows. Cambridge University Press. Stastna, M., & Lamb, K. G. (2002). Large fully nonlinear internal solitary waves: The effect of background current. Physics of fluids, 14(9), 2987-2999. Stepanyants, Y. (2021). How internal waves could lead to wreck American and Indonesian submarines?. arXiv preprint arXiv:2107.00828. Ubelmann, C., Carrere, L., Durand, C., Dibarboure, G., Faugère, Y., Ballarotta, M., & Lyard, F. (2021). Simultaneous estimation of ocean mesoscale and coherent internal tide sea surface height signatures from the global altimetry record. Ocean Science Discussions, 2021, 1-19. Zhang, X., Li, X., & Zheng, Q. (2021). A machine-learning model for forecasting internal wave propagation in the Andaman Sea. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 14, 3095-3106. Zhang H., Meng J., Sun L., & Li S. (2022). Observations of Reflected Internal Solitary Waves near the Continental Shelf of the Dongsha Atoll. Journal of Marine Science and Engineering, 10(6), 763. Zhao, Z., Klemas, V., Zheng, Q., & Yan, X.-H. (2004). Remote sensing evidence for baroclinic tide origin of internal solitary waves in the northeastern South China Sea. Geophys. Res. Lett., 31, L06302. Zhao, Z., Klemas, V., Zheng, Q., Li, X., & Yan, X. H. (2004). Estimating parameters of a two-layer stratified ocean from polarity conversion of internal solitary waves observed in satellite SAR images. Remote sensing of environment, 92(2), 276-287. Zhao, Z. (2020). Southward internal tides in the northeastern South China Sea. Journal of Geophysical Research: Oceans, 125(11), e2020JC016554. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98847 | - |
| dc.description.abstract | 內孤立波(Internal Solitary Waves, ISWs)是全球邊緣海域常見的海洋物理現象,對於海洋環境和生態系統有重要影響。南海(South China Sea, SCS)北部因其強烈的ISWs活動而受到矚目,水平與垂直流速分別可達2 m s-1和0.5 m s-1,振幅更可達100至200 m,因此準確預測其行進與抵達時間相當重要。過去研究指出ISWs的產生與內潮有關,這些內潮是由呂宋海峽南北走向的兩座海脊與正壓潮流作用所產生,內潮進入南海海盆後因非線性頻散(nonlinear dispersion)而演化成ISWs,故內潮預報模式有可能用於預測ISWs,但須釐清內潮訊號與ISWs訊號間的關係。本研究使用MIOST-IT模式預報內潮造成的海表面高度(ITSSH)變化,將其與錨碇觀測、船測以及Himawari-8 (H8)衛星影像所觀測的ISWs事件進行比對。結果發現遙測15次及實測39次中的26次ISWs事件主要發生於ITSSH值由負轉正的零交叉點(zero-crossing point)附近,實測中另外13次ISWs事件因孕育它的內潮受地形影響,其ITSSH值為正值的訊號減弱或產生其他干擾訊號,但後續採用僅有M2分潮的預報結果,則發現所有ISWs事件的主波皆位在ITSSH值負轉正零交叉點附近。ITSSH與其水下內潮造成的等密度面位移(isopycnal displacement)有反相位關係,故推論ISWs是對應內潮的波峰至波谷間的零交叉點附近,誤差約為1.5小時。此對應可運用ISWs的成因與理論行進速度予以解釋,依據過去數值模式研究顯示下沉型內孤立波初始是在內潮的波谷處成形,但因ISWs的行進速度包含線性波速與非線性波速兩分量,假設線性波速與孕育它的內潮的波速等量,加上非線性波速則使得ISWs超前內潮波谷往零交叉點方向行進。 | zh_TW |
| dc.description.abstract | Internal Solitary Waves (ISWs) are ubiquitous in the coastal marginal seas of the world’s oceans, playing a crucial role in shaping marine environments and ecosystems. The northern South China Sea (SCS) has garnered particular attention, as ISWs exhibit horizontal and vertical velocities reaching 2 m s-1 and 0.5 m s-1, respectively, with an amplitude of 100-200 m. Therefore, it is crucial to predict their propagation and arrival time. ISWs evolve from the nonlinear dispersion of internal tides generated by the interaction between barotropic tidal flows and the ridges of the Luzon Strait. The mechanism sheds light on their predictability using an internal tide prediction model. Here, the internal tide- induced sea surface height (ITSSH) predicted from the MIOST-IT model is used to relate with the ISWs detected by the mooring and shipboard measurements and Himawari-8 (H8) satellite images. It is encouraging to reveal that 15 and 26 of 39 ISW events observed by satellite and in situ measurements are primarily located near the transition points where the ITSSH transits from a negative to a positive value. The remaining 13 ISW events observed by in situ measurements, respectively, are associated with their parent internal tides, influenced by topographic, resulting in weakened or disturbed ITSSH signals with positive values. However, using the prediction result of M2 tide, all of the leading waves are located near the zero-crossing points of the ITSSH from negative to positive. As the out of phase relationship between isopycnal displacement of an internal tide and its surface, this suggests that ISWs are located at the zero-crossing point from crest to trough of the internal tide, with an uncertainty of ~1.5 hours. This is plausible because ISWs have an additional nonlinear wave speed compared to their parent internal tides. Once the depressed ISWs are initially formed in the trough of the internal tide, the nonlinear wave speed causes the ISWs to propagate toward the zero-crossing point from crest to trough of the internal tide. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-08-19T16:25:57Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-08-19T16:25:57Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 口試委員審定書 #
致謝 i 中文摘要 ii ABSTRACT iii 目次 v 圖次 vii 表次 xii 第一章 背景簡介 1 第二章 資料方法 8 2.1 實測資料 8 2.1.1 船測 8 2.1.2 錨碇 10 2.2 衛星資料 12 2.2.1 Himawari-8衛星 12 2.2.2 MIOST-IT model 14 第三章 結果 18 3.1 MIOST-IT model預報結果 18 3.2 MIOST-IT model預報結果與H8衛星比較 19 3.3 MIOST-IT model與實測資料比較 21 第四章 討論 29 4.1 ISWs位在內潮波峰至波谷的零交叉點附近可能解釋 29 4.2 計算ISWs非線性波速 30 4.2.1 K-dV type equations及Fully nonlinear DJL equations 30 4.2.2 回推ISWs產生範圍 31 4.3 對北南海內潮波源進行CEOF分析 34 第五章 結論 37 參考文獻 40 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 內潮 | zh_TW |
| dc.subject | 內孤立波 | zh_TW |
| dc.subject | 非線性效應 | zh_TW |
| dc.subject | 南海 | zh_TW |
| dc.subject | 內潮預報模式 | zh_TW |
| dc.subject | internal waves forecast model | en |
| dc.subject | South China Sea | en |
| dc.subject | nonlinear effects | en |
| dc.subject | internal tides | en |
| dc.subject | internal solitary waves | en |
| dc.title | 運用內潮模式、衛星影像及現場觀測預測北南海內孤立波的行進與抵達時間 | zh_TW |
| dc.title | Predicting Internal Solitary Wave Propagation and Arrival Time in the Northern South China Sea: Insights from Internal Tide Model, Satellite Images, and Field Observations | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 詹森;楊穎堅;許哲源;鄭宇昕 | zh_TW |
| dc.contributor.oralexamcommittee | Sen Jan;Yiing Jang Yang;Je-Yuan Hsu;Yu-Hsin Cheng | en |
| dc.subject.keyword | 內孤立波,內潮,內潮預報模式,南海,非線性效應, | zh_TW |
| dc.subject.keyword | internal solitary waves,internal tides,internal waves forecast model,South China Sea,nonlinear effects, | en |
| dc.relation.page | 44 | - |
| dc.identifier.doi | 10.6342/NTU202504125 | - |
| dc.rights.note | 同意授權(限校園內公開) | - |
| dc.date.accepted | 2025-08-14 | - |
| dc.contributor.author-college | 理學院 | - |
| dc.contributor.author-dept | 海洋研究所 | - |
| dc.date.embargo-lift | 2025-08-20 | - |
| 顯示於系所單位: | 海洋研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-2.pdf 授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務) | 7.96 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
