請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98839完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 魏恒巍 | zh_TW |
| dc.contributor.advisor | Hen-Wei Wei | en |
| dc.contributor.author | 李冠緯 | zh_TW |
| dc.contributor.author | Kuan-Wei Lee | en |
| dc.date.accessioned | 2025-08-19T16:24:05Z | - |
| dc.date.available | 2025-08-20 | - |
| dc.date.copyright | 2025-08-19 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-08-11 | - |
| dc.identifier.citation | 劉芳爵、李恆夫、許晉賓、嚴世俊、徐阿里。2004。蛋白質和脂肪含量對離乳仔豬生長性能、胰脂肪和胰輔脂肪活性發展之影響。畜產研究 37 : 1-14。
衛生福利部。2013。食品中脂肪酸之檢驗方法。部授食字第1021950978 號公告。 環境檢驗所。2003。水中矽酸鹽檢測方法-鉬矽酸鹽比色法。環署檢字第0920080856號公告。 Aardsma, M. P., R. D. Mitchell and C. M. Parsons. 2017. Relative metabolizable energy values for fats and oils in young broilers and adult roosters. Poult. Sci. 96: 2320-2329. Aardsma, M. P. and C. M. Parsons. 2017. A slope-ratio precision-fed rooster assay for determination of relative metabolizable energy values for fats and oils. Poult. Sci. 96: 108-117. Abdollahi, M. R., M. Wiltafsky-Martin and V. Ravindran. 2021. Application of Apparent Metabolizable Energy versus Nitrogen-Corrected Apparent Metabolizable Energy in Poultry Feed Formulations: A Continuing Conundrum. Animals (Basel). 11. Ai, H., Y. Y. Lee, Y. Lu, C. P. Tan, O. M. Lai, A. Li, Y. Zhang, Y. Wang and Z. Zhang. 2025. Effect of structured lipids as dietary supplements on the fatty acid profile, carcass yield, blood chemistry, and abdominal fat deposition of female broilers. Poult. Sci. 104: 104579. AOAC. 1984. Official methods of analysis. 14thedition. Association of official Analytical Chemist, Arlington, VA. Arnaud, E. A., G. E. Gardiner and P. G. Lawlor. 2023. Selected Nutrition and Management Strategies in Suckling Pigs to Improve Post-Weaning Outcomes. Animals (Basel). 13. Aviagen. 2019. Ross 308 Brolier Management Handbook. Aviagen Incorporated. USA. Aviagen. 2019. Ross 308 Brolier Nutrition Specification. Aviagen Incorporated. USA. Ayed, H. B., H. Attia and M. Ennouri. 2015. Effect of oil supplemented diet on growth performance and meat quality of broiler chickens. Adv. Tech. Biol. Med. 4: 1–4. Baião, N. C. and L. J. C. Lara. 2005. Oil and fat in broiler nutrition. Revista Brasileira de Ciência Avícola 7: 129-141. Baker, D. H. and Y. Han. 1994. Ideal amino acid profile for chicks during the first three weeks posthatching. Poult. Sci. 73: 1441-1447. Barbehenn, R. V. 2011. Silicon: an indigestible marker for measuring food consumption and utilization by insects. Entomol. Exp. Appl. 67: 247-251. Best, P. 2006. Increased Biofuel Production Will Grow Supplies of By-Products: Glycerine Gives an Energy Option. Feed International: 27 (10): 20–21. Borel, P., M. Armand, M. Senft, M. Andre, H. Lafont and D. Lairon. 1991. Gastric lipase: evidence of an adaptive response to dietary fat in the rabbit. Gastroenterology 100: 1582-1589. Borgstrom, B. and C. Erlanson. 1973. Pancreatic lipase and co-lipase. Interactions and effects of bile salts and other detergents. Eur. J. Biochem. 37: 60-68. Castro, D. P. V., P. R. S. Pimentel, J. M. da Silva Junior, G. F. Virginio Junior, E. A. de Andrade, A. M. Barbosa, E. S. Pereira, C. Ribeiro, L. R. Bezerra and R. L. Oliveira. 2022. Effects of Increasing Levels of Palm Kernel Oil in the Feed of Finishing Lambs. Animals (Basel). 12. Cera, K. R., D. C. Mahan and G. A. Reinhart. 1989. Apparent Fat Digestibilities and Performance Responses of Postweaning Swine Fed Diets Supplemented with Coconut Oil, Corn Oil or Tallow. J. Anim. Sci. 67. Chamberlain, M. B. and E. J. DePeters. 2016. Impacts of feeding lipid supplements high in palmitic acid or stearic acid on performance of lactating dairy cows. J. Appl. Anim. Res. 45: 126-135. Choi, J., B. Kong, B. C. Bowker, H. Zhuang and W. K. Kim. 2023. Nutritional Strategies to Improve Meat Quality and Composition in the Challenging Conditions of Broiler Production: A Review. Animals (Basel). 13. Conway, P. 1994. Function and Regulation of the Gastrointestinal Microbiota of the Pig. Proceedings of the 6th International Symposium on Digestive Physiology in Pigs. 231-240. Dale, N. M. and H. L. Fuller. 1982. True metabolizable energy of fats at low level dietary inclusion. Poult. Sci. 61: 2415-2420. Davis, C. L. and J. K. Drackley. 1998. The development, nutrition, and management of the young calf. Ames : Iowa State University Press. Degolier, T. F., G. E. Duke and R. E. Carraway. 1997. Neurotensin decreases pepsin output and gastrointestinal motility in chickens. Poult. Sci. 76: 1435-1439. Desbruslais, A. and A. Wealleans. 2022. Oxidation in Poultry Feed: Impact on the Bird and the Efficacy of Dietary Antioxidant Mitigation Strategies. Poultry 1: 246-277. Dibner, J. J., C. D. Knight, M. L. Kitchell, C. A. Atwell, A. C. Downs and F. J. Ivey. 1998. Early Feeding and Development of the Immune System in Neonatal Poultry. J. Appl. Poult. Res. 7: 425-436. Dibner, J. J. and J. D. Richards. 2004. The Digestive System: Challenges and Opportunities. J. Appl. Poult. Res. 13: 86-93. Dozier, W. A., 3rd, B. J. Kerr, A. Corzo, M. T. Kidd, T. E. Weber and K. Bregendahl. 2008. Apparent metabolizable energy of glycerin for broiler chickens. Poult. Sci. 87: 317-322. Ecolex Animal Nutrition. 2005. Monogastric Lipo NEO. Ecolex Sdn. Bhd. Malaysia. Web. FAO. 2023. Meat market review. Food and Agriculture Organization of the United Nations. Rome, Italy. Ge, X. K., A. A. Wang, Z. X. Ying, L. G. Zhang, W. P. Su, K. Cheng, C. C. Feng, Y. M. Zhou, L. L. Zhang and T. Wang. 2019. Effects of diets with different energy and bile acids levels on growth performance and lipid metabolism in broilers. Poult. Sci. 98: 887-895. Ghayas, A., J. Hussain, S. Ahmad, H. M. Ishaq, Z. Kamran, M. Yousaf, S. Ahmad, W. Ishaq, S. Munir, I. Ahmed and H. I. Ahmad. 2023. Glycerine: an alternative energy source for poultry. World's Poult. Sci. J. 79: 467-484. Guerreiro Neto, A. C., A. C. Pezzato, J. R. Sartori, C. Mori, V. C. Cruz, V. B. Fascina, D. F. Pinheiro, L. A. Madeira and J. C. Gonçalvez. 2011. Emulsifier in broiler diets containing different fat sources. Rbgv-rev. Bras. Gest. 13: 119-125. Guo, Q., A. Ye, N. Bellissimo, H. Singh and D. Rousseau. 2017. Modulating fat digestion through food structure design. Prog. Lipid. Res. 68: 109-118. Harfoot, C. G. 1978. Lipid metabolism in the rumen. Prog. Lipid. Res 17: 21-54. Havenstein, G. B., P. R. Ferket and M. A. Qureshi. 2003. Growth, livability, and feed conversion of 1957 versus 2001 broilers when fed representative 1957 and 2001 broiler diets. Poult. Sci. 82: 1500-1508. Hill, T. M., J. M. Aldrich, R. L. Schlotterbeck and H. G. Bateman. 2007. Effects of Changing the Fat and Fatty Acid Composition of Milk Replacers Fed to Neonatal Calves. A. A. S. 23: 135-143. Hodzic, A., M. Hamamdzic, A. Gagic, M. Mihaljevic, M. Vegara and J. Krnic. 2008. The influence of dietary palm olein, fish oil and lard on the egg yolk and plasma lipid composition, and performances of laying hens. Pol. J. Vet. Sci 11: 1-7. Hong, D., D. Ragland and O. Adeola. 2002. Additivity and associative effects of metabolizable energy and amino acid digestibility of corn, soybean meal, and wheat red dog for White Pekin ducks. J. Anim. Sci. 80: 3222-3229. Huang, C., Y. Guo and J. Yuan. 2014. Dietary taurine impairs intestinal growth and mucosal structure of broiler chickens by increasing toxic bile acid concentrations in the intestine. Poult. Sci. 93: 1475-1483. Jeanson, S. E. and T. F. Kellogg. 1992. Ontogeny of taurocholate accumulation in the terminal ileal mucosal cells of young chicks. Poult. Sci. 71: 367-372. Jimenez-Moya, B., A. C. Barroeta, A. Tres, M. D. Soler and R. Sala. 2021. Soybean Oil Replacement by Palm Fatty Acid Distillate in Broiler Chicken Diets: Fat Digestibility and Lipid-Class Content along the Intestinal Tract. Animals (Basel). 11. Jin, J., L. Jie, L. Zheng, M. Cheng, D. Xie, Q. Jin and X. Wang. 2018. Characteristics of palm mid-fractions produced from different fractionation paths and their potential usages. Int. J. Food Prop. 21: 58-69. Khan, M. A., A. Bach, D. M. Weary and M. A. G. von Keyserlingk. 2016. Invited review: Transitioning from milk to solid feed in dairy heifers. J. Dairy Sci. 99: 885-902. Kidd, M. T. 2004. Nutritional modulation of immune function in broilers. Poult. Sci. 83: 650-657. Kijora, C., H. Bergner, R. D. Kupsch and L. Hagemann. 1995. Glycerol as a feed component in fattening pigs. Arch. Anim. Nutr. 47: 345-360. Krogdahl, A. 1985. Digestion and absorption of lipids in poultry. J. Nutr. 115: 675-685. Krogh, U., T. S. Bruun, J. Poulsen and P. K. Theil. 2017. Impact of fat source and dietary fibers on feed intake, plasma metabolites, litter gain and the yield and composition of milk in sows. Animal. 11: 975-983. Lalles, J. P., P. Bosi, H. Smidt and C. R. Stokes. 2007. Nutritional management of gut health in pigs around weaning. Proc. Nutr. Soc 66: 260-268. Langlois, A., T. Corring, J. C. Cuber, A. M. Gueugneau, F. Levenez and J. A. Chayvialle. 1989. Effects of pancreatic polypeptide on the pancreatic exocrine secretion stimulated by secretin and cholecystokinin in the conscious pig. Regul. Pept 24: 55-65. Lauridsen, C. 2020. Effects of dietary fatty acids on gut health and function of pigs pre- and post-weaning. J. Anim. Sci. 98. Lee, H. F. and S. H. Chiang. 1994. Energy value of medium-chain triglycerides and their efficacy in improving survival of neonatal pigs. J. Anim. Sci. 72: 133-138. Leeson, S., J.D. Summers And L. Caston. 1991. Diet Dilution and Compensatory Growth in Broilers. Poult. Sci.70:867-873. Leeson, S. and J. O. Atteh. 1995. Utilization of fats and fatty acids by turkey poults. Poult. Sci. 74: 2003-2010. Leeson, S., L. Caston And J.D. Summers. 1996. Broiler response to diet energy. Poult. Sci. 75:529-535. Leeson, S. and J. D. Summers. 2008. Commercial poultry nutrition. 3th edition. Nottingham University Press. Leeson, S. and A. K. Zubair. 1997. Nutrition of the broiler chicken around the period of compensatory growth. Poult. Sci. 76: 992-999. Lin, H., H. C. Jiao, J. Buyse and E. Decuypere. 2019. Strategies for preventing heat stress in poultry. World's Poult. Sci. J. 62: 71-86. Liu, X., K.-S. Yun and I.-H. Kim. 2020. Evaluation of Sodium Stearoyl-2-Lactylate and 1, 3-Diacylglycerol Blend Supplementation in Diets with Different Energy Content on the Growth Performance, Meat Quality, Apparent Total Tract Digestibility, and Blood Lipid Profiles of Broiler Chickens. J. Poultry Sci. 57: 55-62. Liu, Y., X. Mao, B. Yu, J. He, P. Zheng, J. Yu, J. Luo and D. Chen. 2014. Excessive dietary taurine supplementation reduces growth performance, liver and intestinal health of weaned pigs. Livest. Sci. 168: 109-119. Lizardo, R., J. van Milgen, J. Mourot, J. Noblet and M. Bonneau. 2002. A nutritional model of fatty acid composition in the growing-finishing pig. Livest. Prod. Sci. 75: 167-182. Llaurado-Calero, E., J. Garcia-Gudino, F. I. Hernandez-Garcia, M. Izquierdo, R. Lizardo, D. Torrallardona, E. Esteve-Garcia and N. Tous. 2025. Effect of fish oil in Iberian sow diets on fatty acid, oxylipins and immune traits of colostrum and milk, and suckling piglets' growth performance. Animal. 19: 101430. Long, G. L., W. X. Hao, L. F. Bao, J. H. Li, Y. Zhang and G. H. Li. 2019. Effects of dietary inclusion levels of palm oil on growth performance, antioxidative status and serum cytokines of broiler chickens. J. Anim. Physiol. Anim. Nutr. 103: 1116-1124. Madrid, J., C. Villodre, L. Valera, J. Orengo, S. Martinez, M. J. Lopez, M. D. Megias and F. Hernandez. 2013. Effect of crude glycerin on feed manufacturing, growth performance, plasma metabolites, and nutrient digestibility of growing-finishing pigs. J. Anim. Sci. 91: 3788-3795. Maharjan, P., D. A. Martinez, J. Weil, N. Suesuttajit, C. Umberson, G. Mullenix, K. M. Hilton, A. Beitia and C. N. Coon. 2021. Review: Physiological growth trend of current meat broilers and dietary protein and energy management approaches for sustainable broiler production. Animal. 100284. Mandalawi, H. A., M. V. Kimiaeitalab, V. Obregon, D. Menoyo and G. G. Mateos. 2014. Influence of source and level of glycerin in the diet on growth performance, liver characteristics, and nutrient digestibility in broilers from hatching to 21 days of age. Poult. Sci. 93: 2855-2863. Mateos, G. G., J. L. Sell and J. A. Eastwood. 1982. Rate of food passage (transit time) as influenced by level of supplemental fat. Poult. Sci. 61: 94-100. Moss, A. F., P. V. Chrystal, D. J. Cadogan, S. J. Wilkinson, T. M. Crowley and M. Choct. 2021. Precision feeding and precision nutrition: a paradigm shift in broiler feed formulation? Anim Biosci. 34: 354-362. NRC. 1994. Nutrient requirements of poultry. National Academy Press. Washington, D.C. NRC. 2001. Nutrient Requirements of Dairy Cattle. seventh revised edition. National Research Council. Washington, D.C. Omer E. and C.Chiodi. 2024. Fat digestion and absorption: Normal physiology and pathophysiology of malabsorption, including diagnostic testing. Nutr. Clin. Pract. 39: 6-16. Pluske, J. R., D. L. Turpin and J. C. Kim. 2018. Gastrointestinal tract (gut) health in the young pig. Anim. Nutr. 4: 187-196. Priyati, R. and R.Tyers. 2016. Price Relationships in Vegetable Oil and Energy Markets. Economics discussion papers. 16: 11. Ravindran, V. and M. R. Abdollahi. 2021. Nutrition and Digestive Physiology of the Broiler Chick: State of the Art and Outlook. Animals (Basel). 11. Ravindran, V., P. Tancharoenrat, F. Zaefarian and G. Ravindran. 2016. Fats in poultry nutrition: Digestive physiology and factors influencing their utilisation. Anim. Feed Sci. Technol. 213: 1-21. Ren, C. X., Y. J. Wang, X. F. Lin, F. Yang, J. Chen, H. Q. Song, K. Shi, J. S. Song, F. Chen, S. H. Zhang and W. T. Guan. 2020. Palm oil encapsulated by homogenizing and spray drying enhances nutrient digestibility and attenuates diarrhoea of piglets. Anim. Feed Sci. Technol. 266. Saensukjaroenphon, M. 2016. The effect of ingredient properties, liquid system and mix time on uniformity of mix and testing of uniformity of mix. Doctoral dissertation. Kansas State University. Sá, R., M. Gandarillas, A. P. Schinckel, D. Kuppenheim, J. Salgado, C. M. Cox, R. E. Larraín and E. Vargas-Bello-Pérez. 2018. Utilisation of a mix of powdered oils as fat supplement in nursery- and growing-pig diets. Anim. Prod. Sci. 58. Sallee, V. L. and J. M. Dietschy. 1973. Determinants of intestinal mucosal uptake of short- and medium-chain fatty acids and alcohols. J. Lipid Res. 14: 475-484. Saminathan, M., W. N. W. Mohamed, M. Noh, N. A. Ibrahim, M. A. Fuat and S. K. Ramiah. 2022. Effects of dietary palm oil on broiler chicken productive performance and carcass characteristics: a comprehensive review. Trop. Anim. Health Prod. 54: 64. Schmidt, C. J., M. E. Persia, E. Feierstein, B. Kingham and W. W. Saylor. 2009. Comparison of a modern broiler line and a heritage line unselected since the 1950s. Poult. Sci. 88: 2610-2619. Schulthess, G., G. Lipka, S. Compassi, D. Boffelli, F. E. Weber, F. Paltauf and H. Hauser. 1994. Absorption of monoacylglycerols by small intestinal brush border membrane. Biochemistry-US. 33: 4500-4508. Seo, J., W. Kim, J. Kim, J. K. Kim, S. C. Kim, Y. Jang, K. Jang, K. Kim, B. Kim, S. Park, I. Park, M. K. Kim, K. S. Seo, H. B. Kim, I. H. Kim, S. Seo and M. Song. 2015. Effects of Palm Kernel Expellers on Growth Performance, Nutrient Digestibility, and Blood Profiles of Weaned Pigs. Asian-Australas. J. Anim. Sci. 28: 987-992. Sibbald, I. R. 1975. The effect of level of feed intake on metabolizable energy values measured with adult roosters. Poult. Sci. 54: 1990-1997. Sibbald, I. R. 1976. A bioassay for true metabolizable energy in feedingstuffs. Poult. Sci. 55: 303-308. Sibbald, I. R. 1978. The True Metabolizable Energy Values of Mixtures of Tallow with Either Soybean Oil or Lard. Poult. Sci. 57: 473-477. Sibbald, I. R. 1979. Effects of Level of Feed Input, Dilution of Test Material, and Duration of Excreta Collection on True Metabolizable Energy Values. Poult. Sci. 58: 1325-1329. Sibbald, I. R. and K. Price. 1977. The Effects of Level of Dietary Inclusion and of Calcium on the True Metabolizable Energy Values of Fats. Poult. Sci. 56: 2070-2078. Sklan, D. 1978. Digestion and Absorption of Lipids in Chicks Fed Triglycerides or Free Fatty Acids: Synthesis of Monoglycerides in the Intestine. Sklan, D. and Y. Noy. 2000. Hydrolysis and absorption in the small intestines of posthatch chicks. Poult. Sci. 79: 1306-1310. Smink, W., W. J. J. Gerrits, R. Hovenier, M. J. H. Geelen, M. W. A. Verstegen and A. C. Beynen. 2010. Effect of dietary fat sources on fatty acid deposition and lipid metabolism in broiler chickens. Poult. Sci. 89: 2432-2440. Sugiharto, S. 2016. Role of nutraceuticals in gut health and growth performance of poultry. J. Saudi Soc. Agric. Sci. 15: 99-111. Summers, J. D., D. Spratt and J. L. Atkinson. 1990. Restricted Feeding and Compensatory Growth for Broilers. Poult. Sci. 69: 1855-1861. Swiatkiewicz, S. and J. Koreleski. 2009. Effect of crude glycerin level in the diet of laying hens on egg performance and nutrient utilization. Poult. Sci. 88: 615-619. Szabó, R. T., M. Kovács-Weber, Á. Zimborán, L. Kovács, and M. Erdélyi. 2023. Effects of Short- and Medium-Chain Fatty Acids on Production, Meat Quality, and Microbial Attributes—A Review. Molecules. 28: 4956. Tallentire, C. W., I. Leinonen and I. Kyriazakis. 2016. Breeding for efficiency in the broiler chicken: A review. Agron. Sustainable Dev. 36. Tancharoenrat, P., V. Ravindran, F. Zaefarian and G. Ravindran. 2013. Influence of age on the apparent metabolisable energy and total tract apparent fat digestibility of different fat sources for broiler chickens. Anim. Feed Sci. Technol. 186: 186-192. Tancharoenrat, P., V. Ravindran, F. Zaefarian and G. Ravindran. 2014. Digestion of fat and fatty acids along the gastrointestinal tract of broiler chickens. Poult. Sci. 93: 371-379. USDA. 2025. Soybeans and Oil Crops. U. S. Department of Agriculture. United States. Web. Uni, Z., E. Tako, O. Gal-Garber and D. Sklan. 2003. Morphological, molecular, and functional changes in the chicken small intestine of the late-term embryo. Poult. Sci. 82: 1747-1754. Valencia, M. E., S. E. Watkins, A. L. Waldroup, P. W. Waldroup and D. L. Fletcher. 1993. Utilization of crude and refined palm and palm kernel oils in broiler diets. Poult. Sci. 72: 2200-2215. Van Amburgh, M. E., E. A. Collao-Saenz, R. J. Higgs, D. A. Ross, E. B. Recktenwald, E. Raffrenato, L. E. Chase, T. R. Overton, J. K. Mills and A. Foskolos. 2015. The Cornell Net Carbohydrate and Protein System: Updates to the model and evaluation of version 6.5. J. Dairy Sci. 98: 6361-6380. Van Tilbeurgh, H., S. Bezzine, C. Cambillau, R. Verger and F. Carriere. 1999. Colipase: structure and interaction with pancreatic lipase. Biochim. Biophys. Acta. 1441: 173-184. Vinolo, M.A.R., H.G. Rodrigues, R.T. Nachbar and R. Curi. 2011. Regulation of Inflammation by Short Chain Fatty Acids. Nutrients. 3:858-876. Walker, D. M. 2009. The development of the digestive system of the young animal II. Carbohydrase enzyme development in the young pig. J. Agr. Sci. 52: 357-363. Wilms, J. N., K. S. Hare, A. J. Fischer-Tlustos, P. Vahmani, M. E. R. Dugan, L. N. Leal and M. A. Steele. 2022. Fatty acid profile characterization in colostrum, transition milk, and mature milk of primi- and multiparous cows during the first week of lactation. J. Dairy Sci. 105: 4692-4710. Wilms, J. N., V. van der Nat, M. H. Ghaffari, M. A. Steele, H. Sauerwein, J. Martin-Tereso and L. N. Leal. 2024. Fat composition of milk replacer influences growth performance, feeding behavior, and plasma fatty acid profile in ad libitum-fed calves. J. Dairy Sci. 107: 2797-2817. Yang, F., S. Zhang, S. W. Kim, C. Ren, M. Tian, L. Cheng, J. Song, J. Chen, F. Chen and W. Guan. 2018. Fat encapsulation enhances dietary nutrients utilization and growth performance of nursery pigs. J. Anim. Sci. 96: 3337-3347. Zhan, X. A., M. Wang, H. Ren, R. Q. Zhao, J. X. Li and Z. L. Tan. 2007. Effect of early feed restriction on metabolic programming and compensatory growth in broiler chickens. Poult. Sci. 86:654-660. Zeisel, S. H. 2006. Choline: critical role during fetal development and dietary requirements in adults. Annu. Rev. Nutr. 26: 229-250. Zentek, J., S. Buchheit-Renko, F. Ferrara, W. Vahjen, A. G. Van Kessel and R. Pieper. 2011. Nutritional and physiological role of medium-chain triglycerides and medium-chain fatty acids in piglets. Anim. Health Res. Rev. 12: 83-93. Zhang, Z., S. K. La, G. W. Zhang, H. S. Du, Z. Z. Wu, C. Wang, Q. Liu, G. Guo, W. J. Huo, J. Zhang, Y. L. Zhang, C. X. Pei and S. L. Zhang. 2020. Diet supplementation of palm fat powder and coated folic acid on performance, energy balance, nutrient digestion, ruminal fermentation and blood metabolites of early lactation dairy cows. Anim. Feed Sci. Technol. 265. Zubair, A. K. and S. Leeson. 2019. Compensatory growth in the broiler chicken: a review. World's Poult. Sci. J. 52: 189-201. Zuidhof, M. J., B. L. Schneider, V. L. Carney, D. R. Korver and F. E. Robinson. 2014. Growth, efficiency, and yield of commercial broilers from 1957, 1978, and 2005. Poult. Sci. 93: 2970-2982. Zulkifli, I., N. N. Htin, A. R. Alimon, T. C. Loh and M. Hair-Bejo. 2006. Dietary Selection of Fat by Heat-stressed Broiler Chickens. Asian-Australas. J. Anim. Sci. 20: 245-251. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98839 | - |
| dc.description.abstract | 隨著白肉雞產業的快速發展,對高效能量來源的需求日益增加。棕櫚油因其高能量密度及改善飼料嗜口性的特性,在家禽飼料中具有重要應用價值。而棕櫚油粉在保育豬飼糧中已展現優異表現,然其在家禽飼糧中的應用效果尚待評估。本研究旨在探討白肉雞對棕櫚油粉所含能量的利用能力。
研究分為三個試驗:試驗一以全糞收集法檢測能量之消化率,選用39週齡來亨蛋公雞,測定棕櫚油、含游離甘油棕櫚油粉與不含游離甘油棕櫚油粉的氮矯正真可代謝能(TMEn)濃度,結果分別為8683.77、7063.70與8489.60 cal/g,三者均呈現高達90% 的能量消化率。試驗二採用指示劑法,以0日齡Ross 308白肉雞為實驗動物,將生長階段分為育雛期、生長期與肥育期,評估不同油脂來源對能量消化率的影響。結果顯示,隨著白肉雞生長,各組飼糧之能量消化率均呈現上升趨勢。棕櫚油在育雛期、生長期和肥育期的AME分別為5492.4、6784.4與7683.2 kcal/kg;含游離甘油棕櫚油粉分別為2227.8、4994.4與6583.9 kcal/kg;不含游離甘油棕櫚油粉則為2012.2、3743.9與7853.2 kcal/kg。試驗三進行生長試驗,評估不同油脂來源對白肉雞生長性能的影響。結果顯示,棕櫚油組展現最佳生長表現,體重增加達2108克,飼料轉換率為1.29。 本實驗結果顯示,白肉雞對油脂的利用呈現明顯的階段性差異:早期生長階段因消化系統發育不完全,對長鏈飽和脂肪酸的消化吸收效率較低;隨著生長進入後期,不同油脂來源的能量利用效率則趨於一致。此發現說明成熟蛋公雞AMEn 濃度不宜直接作為白肉雞早期飼糧配方設計的唯一依據。儘管棕櫚油粉在保育豬飼糧中具有良好效果,但證實不適合做為白肉雞飼糧油脂來源。含游離甘油處理組雖未達顯著差異,但在最終上市體重方面呈現正面趨勢。建議實務應用上應採取更精確的分階段營養策略飼養白肉雞,特別是在油脂來源的選擇上,應依據白肉雞不同生長階段的生理特性進行調整。 | zh_TW |
| dc.description.abstract | With the rapid development of the broiler industry, the demand for high-efficiency energy sources is increasing. Palm oil holds significant application value in poultry feed due to its high energy density and ability to improve feed palatability. While palm oil powder (POP) has shown excellent performance in nursery pig diets, its effectiveness in poultry feed requires evaluation. This study aimed to investigate the ability of broiler chickens to utilize the energy contained in POP.
The research comprised three experiments. Experiment 1 determined the nitrogen-corrected true metabolizable energy (TMEn) concentration of palm oil, POP containing free glycerol, and POP without free glycerol using the total excreta collection method with 39-week-old Leghorn roosters. The TMEn values were 8683.77, 7063.70, and 8489.60 cal/g, respectively, with all exhibiting high energy digestibility exceeding 90%. Experiment 2 employed the indicator method using day-old Ross 308 broiler chickens, divided into starter, grower, and finisher phases, to evaluate the effect of different fat sources on energy utilization. Results showed that the apparent metabolizable energy (AME) of diets in all groups increased as the broilers grew. The AME values (kcal/kg) for palm oil during the starter, grower, and finisher phases were 5492.4, 6784.4, and 7683.2, respectively; for POP containing free glycerol, they were 2227.8, 4994.4, and 6583.9, respectively; and for POP without free glycerol, they were 2012.2, 3743.9, and 7853.2, respectively. Experiment 3 conducted a growth trial to assess the impact of different fat sources on broiler growth performance. Results indicated that the palm oil group exhibited the best growth performance, with a body weight gain (BWG) of 2108 g and a feed conversion ratio (FCR) of 1.29. The results demonstrate significant age-dependent differences in fat utilization by broilers: efficiency of digesting and absorbing long-chain saturated fatty acids is lower during the early growth stage due to the immature digestive system; however, energy utilization efficiency from different fat sources tends to converge in later growth stages. This finding suggests that TMEn values determined in adult roosters should not be the sole basis for formulating diets for early-stage broilers. Despite its effectiveness in nursery pig diets, POP proved unsuitable as a fat source for broiler feed. Although the treatment including free glycerol (POP containing free glycerol) did not show significant differences, it exhibited a positive trend regarding final market body weight. It is recommended that practical applications adopt more precise phase-feeding strategies, particularly in selecting fat sources adjusted according to the physiological characteristics of broilers at different growth stages. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-08-19T16:24:05Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-08-19T16:24:05Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 誌謝 I
摘要 II ABSTRACT IV 目次 VI 圖次 IX 表次 X 壹、前言 1 貳、文獻探討 3 一、白肉雞簡介與營養需求趨勢 3 二、動物不同階段營養需求與消化道發育情形 5 (一)、反芻動物(牛)營養需求與消化道發育 5 (二)、單胃動物(豬)營養需求與消化道發育 6 (三)、肉雞營養需求與消化道發育 8 三、飼料能量代謝與消化率 10 (一)、能量之利用 10 (二)、飼料能量評估與氮矯正可代謝能分析 10 (三)、消化率測定方法與指示劑法 12 四、棕櫚油加工對飼料應用之影響 14 (一)、棕櫚油製作過程 14 (二)、棕櫚油加工製品用於動物飼料中 16 (三)、棕櫚油粉的利用性 18 (四)、棕櫚油的經濟效應 19 (五)、棕櫚油粉的經濟效應 21 五、脂肪對經濟動物之利用與應用 24 (一)、消化 24 (二)、吸收 26 (三)、油脂在飼糧之應用 28 參、研究與試驗 31 第一章、以成熟蛋公雞為動物模式,檢測棕櫚油粉之氮矯正可代謝能濃度 31 一、前言 31 二、材料與方法 32 (一)、試驗用成熟蛋公雞之試驗操作 32 (二)、樣品之水分測定與蛋白質測定 32 (三)、油脂脂肪酸組成分析 34 (四)、表面消化率之檢測 34 (五)、表面可代謝能濃度與真可代謝能濃度之測定 35 (六)、統計分析 35 三、結果 37 (一)、棕櫚油、含游離甘油之棕櫚油粉與不含游離甘油之棕櫚油粉脂肪酸比例分析 ……………………………………………………………………………………………………………37 (二)、玉米粉、混合原料與排泄物營養分含量與氮蓄積分析 39 (三)、不同油脂來源之混合原料表面消化率、AME、AMEn、TME、TMEn與能量消化率 42 (四)、不同油脂分別以比例或是能量消化率計算之AME、AMEn、TME與TMEn ……………………………………………………………………………………………………………44 四、討論 46 第二章、以白肉雞為動物模式,檢測棕櫚油粉之可代謝能濃度 51 一、前言 51 二、材料與方法 52 (一)、白肉雞之試驗操作 52 (二)、表面消化率之檢測 53 (三)、表面可代謝能濃度計算 54 (四)、統計分析 54 三、結果 57 (一)、不同油脂來源混合飼糧對白肉雞生長表現之影響 57 (二)、不同油脂來源混合飼糧對白肉雞不同生長階段之能量消化率 60 (三)、不同油脂對白肉雞不同生長階段之AME與能量消化率 62 四、討論 67 第三章、棕櫚油粉對白肉雞生長表現之評估 70 一、前言 70 二、材料與方法 71 (一)、白肉雞之飼養管理 71 (二)、統計分析 72 三、結果 76 (一)、不同油脂來源對白肉雞生長表現之影響 76 四、討論 79 肆、綜合討論 82 伍、結論 84 陸、參考文獻 85 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 棕櫚油粉 | zh_TW |
| dc.subject | 白肉雞 | zh_TW |
| dc.subject | 真可代謝能濃度 | zh_TW |
| dc.subject | 可代謝能濃度 | zh_TW |
| dc.subject | 消化率 | zh_TW |
| dc.subject | digestibility | en |
| dc.subject | apparent metabolizable energy | en |
| dc.subject | true metabolizable energy | en |
| dc.subject | palm oil powder | en |
| dc.subject | Broiler | en |
| dc.title | 白肉雞利用棕櫚油粉所含能量之探討 | zh_TW |
| dc.title | To investigate the energy utilization of palm oil powder in broiler chickens | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 王翰聰;李滋泰;謝宗霖 | zh_TW |
| dc.contributor.oralexamcommittee | Han-Tsung Wang;Tzu-Tai Lee;Tsung-Lin Hsieh | en |
| dc.subject.keyword | 白肉雞,棕櫚油粉,消化率,可代謝能濃度,真可代謝能濃度, | zh_TW |
| dc.subject.keyword | Broiler,palm oil powder,digestibility,apparent metabolizable energy,true metabolizable energy, | en |
| dc.relation.page | 96 | - |
| dc.identifier.doi | 10.6342/NTU202504354 | - |
| dc.rights.note | 同意授權(全球公開) | - |
| dc.date.accepted | 2025-08-14 | - |
| dc.contributor.author-college | 生物資源暨農學院 | - |
| dc.contributor.author-dept | 動物科學技術學系 | - |
| dc.date.embargo-lift | 2025-08-20 | - |
| 顯示於系所單位: | 動物科學技術學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-2.pdf | 1.32 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
