Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
    • Advisor
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 機械工程學系
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98838
Full metadata record
???org.dspace.app.webui.jsptag.ItemTag.dcfield???ValueLanguage
dc.contributor.advisor張秉純zh_TW
dc.contributor.advisorBiing-Chwen Changen
dc.contributor.author蘇品瑄zh_TW
dc.contributor.authorPin-Hsuan Suen
dc.date.accessioned2025-08-19T16:23:50Z-
dc.date.available2025-08-20-
dc.date.copyright2025-08-19-
dc.date.issued2025-
dc.date.submitted2025-08-06-
dc.identifier.citation[1] X. Zhou, G. Liu, B. Han, H. Li, L. Zhang, and X. Liu, “Different prevention and treatment strategies for knee osteoarthritis (KOA) with various lower limb exoskeletons – a comprehensive review,” Robotica, vol. 39, no. 8, pp. 1345–1367, 2021.
[2] S. Nadeau, B. J. McFadyen, and F. Malouin, “Frontal and sagittal plane analyses of the stair climbing task in healthy adults aged over 40 years: what are the challenges compared to level walking?,” Clinical Biomechanics, vol. 18, no. 10, pp. 950–959, Oct. 2003.
[3] B.-C. Chang and S. K. Agrawal, “Stability during Stairmill ascent with upward and downward applied forces on the pelvis,” IEEE Transactions on Neural Systems and Rehabilitation Engineering, vol. 29, pp. 1504–1512, 2021, doi: 10.1109/TNSRE.2021.3099423.
[4] B. J. McFadyen and D. A. Winter, “An integrated biomechanical analysis of normal stair ascent and descent,” Journal of Biomechanics, vol. 21, no. 9, pp. 733–744, 1988, doi: 10.1016/0021-9290(88)90282-5.
[5] H. Yano, S. Tamefusa, N. Tanaka, H. Saitou, and H. Iwata, “Gait rehabilitation system for stair climbing and descending,” in Proc. 2010 IEEE Haptics Symposium, Waltham, MA, USA, 2010, pp. 393–400, doi: 10.1109/HAPTIC.2010.5444627.
[6] M. R. Afsar, M. R. Haque, M. Dooley, and X. Shen, “RailBot: A novel assistive device for stair climbing,” Journal of Medical Devices, vol. 15, no. 1, p. 014505, Mar. 2021, doi: 10.1115/1.4049546.
[7] G. Elliott, G. S. Sawicki, A. Marecki, and H. Herr, “The biomechanics and energetics of human running using an elastic knee exoskeleton,” in Proc. 2013 IEEE 13th Int. Conf. on Rehabilitation Robotics (ICORR), Seattle, WA, USA, 2013, pp. 1–6, doi: 10.1109/ICORR.2013.6650418.
[8] G. Huang, L. Ma, H. Zhu, Y. Qian, Y. Leng, and C. Fu, “A biologically-inspired soft exosuit for knee extension assistance during stair ascent,” in Proc. 2020 5th Int. Conf. on Advanced Robotics and Mechatronics (ICARM), Shenzhen, China, 2020, pp. 570–575, doi: 10.1109/ICARM49381.2020.9195271.
[9] N. Costa and D. G. Caldwell, “Control of a biomimetic ‘soft-actuated’ 10DoF lower body exoskeleton,” in Proc. 1st IEEE/RAS-EMBS Int. Conf. on Biomedical Robotics and Biomechatronics (BioRob 2006), Pisa, Italy, 2006, pp. 495–501, doi: 10.1109/BIOROB.2006.1639137.
[10] E. J. Ball, M. A. Meller, J. B. Chipka, and E. Garcia, “Modeling and testing of a knitted-sleeve fluidic artificial muscle,” Smart Materials and Structures, vol. 25, no. 11, p. 115024, Oct. 2016, doi: 10.1088/0964-1726/25/11/115024.
[11] B. Kalita, A. Leonessa, and S. K. Dwivedy, “A review on the development of pneumatic artificial muscle actuators: Force model and application,” Actuators, vol. 11, no. 10, p. 288, Oct. 2022, doi: 10.3390/act11100288.
[12] M. M. Mañago, J. R. Hebert, J. Kittelson, and M. Schenkman, “Contributions of ankle, knee, hip, and trunk muscle function to gait performance in people with multiple sclerosis: A cross-sectional analysis,” Physical Therapy, vol. 98, no. 7, pp. 595–604, Jul. 2018, doi: 10.1093/ptj/pzy048.
[13] P. E. Neumann, “Kinesiology of the hip: A focus on muscular actions,” Journal of Orthopaedic & Sports Physical Therapy, vol. 40, no. 2, pp. 82–94, Feb. 2010, doi: 10.2519/jospt.2010.3025.
[14] I. M. K. Ho, L. P. C. Ng, K. O. L. Lee, and T. C. J. Luk, “Effects of knee flexion angles in supine bridge exercise on trunk and pelvic muscle activity,” Research in Sports Medicine, vol. 28, no. 4, pp. 484–497, Oct.–Dec. 2020, doi: 10.1080/15438627.2020.1777552.
[15] X. Guan, S. Kuai, L. Song, W. Liu, Y. Liu, L. Ji, and R. Wang, “Effects of ankle joint motion on pelvis-hip biomechanics and muscle activity patterns of healthy individuals in knee immobilization gait,” Journal of Healthcare Engineering, vol. 2019, p. 3812407, Oct. 2019, doi: 10.1155/2019/3812407.
[16] H. D. Lee, H. Park, S. Bae, and et al., “Development of a soft exosuit system for walking assistance during stair ascent and descent,” International Journal of Control, Automation and Systems, vol. 18, no. 11, pp. 2678–2686, Nov. 2020, doi: 10.1007/s12555-019-0584-5.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98838-
dc.description.abstract本研究旨在開發一款應用於膝關節的輕量化穿戴式氣動輔助裝置,藉由針織氣動人工肌肉(knit-covered pneumatic artificial muscle, k-PAM)於上樓梯過程中提供膝關節伸展輔助力矩,以降低肌肉激發需求。為達成此研究目標,本裝置設計滿足三項關鍵需求:採用氣動人工肌肉確保柔軟性與輕量化特性、整合力敏電阻感測器實現主動式輔助功能,以及建立精準時序控制機制於站立期初期提供膝關節伸展輔助。
裝置整合壓力感測器與即時步態識別控制策略,能在站立期初期提供輔助力。透過十位健康受試者之人體實驗,分析穿戴裝置對關節角度與肌電訊號的影響。結果顯示,在輔助啟動條件下,16條肌肉中股直肌、臀大肌與腓腸肌群等關鍵肌肉於站立期與完整週期皆呈現激發顯著性下降(p<0.05),表示裝置有效分擔膝關節周圍肌群的伸展需求。關節角度分析方面,膝關節活動範圍微幅上升,踝關節變化達統計顯著,顯示下肢運動鏈的協調調整效應。值得注意的是,由於關節角度變化大部分未達統計顯著性差異,表明輔助裝置基本不影響使用者原有的運動方式和關節角度模式,此特性有助於維持自然的運動協調性並降低適應負擔。
本研究成功驗證針織氣動人工肌肉輔助裝置在減輕膝關節負荷方面的有效性。該系統具備柔軟性、輕量化、安全性等優勢,能在提供有效輔助的同時維持使用者自然運動模式,展現良好的實用潛力與臨床應用價值。
zh_TW
dc.description.abstractThis study aims to develop a lightweight wearable pneumatic assistive device for the knee joint. The device utilizes knit-covered pneumatic artificial muscles (k-PAMs) to provide extension assistive torque to the knee during stair ascent, thereby reducing the demand for muscle activation.
To achieve this goal, the device is designed to meet three key requirements: employing pneumatic artificial muscles to ensure softness and lightweight characteristics; integrating Force Sensor Resistors (FSRs) to enable active assistance; and establishing a precise timing control mechanism to deliver knee extension support at the early stance phase.
The device integrates pressure sensors and a real-time gait recognition control strategy, enabling it to provide assistance during the early stance phase. Human experiments were conducted with ten healthy participants to analyze the effects of the wearable device on joint angles and electromyography (EMG) signals. The results showed that, under assistive conditions, key muscles such as the rectus femoris, gluteus maximus, and gastrocnemius exhibited significantly reduced activation (p< 0.05) during the stance phase and across the full gait cycle. This indicates that the device effectively reduces the extension demand on muscles surrounding the knee joint.
In terms of joint kinematics, the knee's range of motion showed a slight increase, while ankle joint changes reached statistical significance, suggesting a coordinated adjustment in the lower limb kinematic chain. Notably, since most joint angle variations did not reach statistical significance, it suggests that the assistive device does not substantially alter the user’s original movement patterns or joint angle trajectories—this feature helps maintain natural movement coordination and minimizes adaptation burden.
This study successfully demonstrates the effectiveness of the knit-covered pneumatic artificial muscle assistive device in reducing knee joint load. The system offers advantages such as flexibility, lightweight design, and safety, enabling it to provide effective assistance while preserving the user’s natural gait pattern. These attributes highlight the device’s strong practical potential and clinical application value.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-08-19T16:23:50Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-08-19T16:23:50Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents口試委員會審定書 i
誌謝 ii
摘要 iii
ABSTRACT iv
目 次 vi
圖 次 ix
表 次 xii
縮寫對照表 xiii
符號彙編 xv
第1章 緒論 1
1.1 研究動機與背景 1
1.2 文獻回顧 1
1.2.1 上樓梯之生物力學分析 1
1.2.2 爬樓梯輔助及復健方式 4
1.2.3 現有穿戴式外骨骼 4
1.2.4 氣動人工肌肉 5
1.3 研究目的 6
第2章 針織氣動人工肌肉設計與製作 8
2.1 簡介及原理 8
2.2 結構設計與製作 9
2.3 性能測試 11
2.3.1 測試平台 9
2.3.2 測試流程及結果 13
2.3.3 實驗限制與討論 18
第3章 上樓梯分析之人體實驗 20
3.1 實驗目的 20
3.2 實驗設備介紹 20
3.2.1 光學動作追蹤系統 20
3.2.2 表面肌電量測系統 22
3.2.3 人體實驗準備與流程 22
3.3 數據分析方法 23
3.3.1 週期切分 23
3.3.2 關節角度分析 24
3.3.3 肌電訊號分析 24
3.4 實驗結果與討論 25
第4章 膝關節穿戴裝置系統設計 27
4.1 整體設計 27
4.2 足底壓力感測器 28
4.3 控制策略 30
4.4 控制方式 31
第5章 輔助裝置對於上樓梯動作之影響 33
5.1 實驗設計與執行 33
5.1.1 實驗目的與對象 33
5.1.2 實驗配置 34
5.1.3 流程與紀錄 35
5.2 數據分析方法 37
5.2.1 站立期佔比 37
5.2.2 關節角度分析 37
5.2.3 肌電訊號分析 37
5.2.4 統計分析 38
5.3 實驗結果 38
5.3.1 站立期佔比與關節角度 38
5.3.2 肌電訊號 41
5.4 討論 46
5.4.1 實驗結果討論 46
5.4.2 實驗限制 50
第6章 結論 51
6.1 研究總結與貢獻 51
6.2 未來展望 51
參考文獻 53
-
dc.language.isozh_TW-
dc.subject膝關節輔助zh_TW
dc.subject穿戴式外骨骼zh_TW
dc.subject肌電訊號zh_TW
dc.subject氣動人工肌肉zh_TW
dc.subject針織結構zh_TW
dc.subject上樓梯zh_TW
dc.subject生物力學zh_TW
dc.subject步態分析zh_TW
dc.subjectpneumatic artificial muscleen
dc.subjectknit structureen
dc.subjectelectromyographyen
dc.subjectknee assistanceen
dc.subjectgait analysisen
dc.subjectbiomechanicsen
dc.subjectstair ascenten
dc.subjectwearable exoskeletonen
dc.title探討編織氣動致動器於膝部施力對上樓梯之影響zh_TW
dc.titleInvestigating the Effect of Knee-Applied Force in Stair Ascent with Knitted-Pneumatic Actuatoren
dc.typeThesis-
dc.date.schoolyear113-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee詹魁元;尤政平zh_TW
dc.contributor.oralexamcommitteeKuei-Yuan Chan;Cheng-Ping Yuen
dc.subject.keyword穿戴式外骨骼,上樓梯,生物力學,步態分析,膝關節輔助,肌電訊號,氣動人工肌肉,針織結構,zh_TW
dc.subject.keywordwearable exoskeleton,stair ascent,biomechanics,gait analysis,knee assistance,electromyography,pneumatic artificial muscle,knit structure,en
dc.relation.page54-
dc.identifier.doi10.6342/NTU202504202-
dc.rights.note同意授權(限校園內公開)-
dc.date.accepted2025-08-12-
dc.contributor.author-college工學院-
dc.contributor.author-dept機械工程學系-
dc.date.embargo-lift2026-09-01-
Appears in Collections:機械工程學系

Files in This Item:
File SizeFormat 
ntu-113-2.pdf
  Restricted Access
3.78 MBAdobe PDFView/Open
Show simple item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved