請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98836完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 李世光 | zh_TW |
| dc.contributor.advisor | Chih-Kung Lee | en |
| dc.contributor.author | 王敬惟 | zh_TW |
| dc.contributor.author | Ching-Wei Wang | en |
| dc.date.accessioned | 2025-08-19T16:23:22Z | - |
| dc.date.available | 2025-08-20 | - |
| dc.date.copyright | 2025-08-19 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-08-12 | - |
| dc.identifier.citation | [1]. Jin, T. and X. Han. Robotic arms in precision agriculture: A comprehensive review of the technologies, applications, challenges, and future prospects. Computers and Electronics in Agriculture, 2024, vol. 221, p. 108938. https://doi.org/10.1016/j.compag.2024.108938.
[2]. Choi, Y.H., D.H. Sun, and O.S. Kwon. Analysis of precision positioning of multi-axis robot system. in 2015 15th International Conference on Control, Automation and Systems (ICCAS). 2015. [3]. Jeong, S.-K. and S.-S. You. Precise position synchronous control of multi-axis servo system. Mechatronics, 2008, vol. 18, no. 3, pp. 129-140. https://doi.org/10.1016/j.mechatronics.2007.10.009. [4]. Schuchert, P. and A. Karimi. High-precision control of a robotic arm using frequency-based data-driven methods. Control Engineering Practice, 2025, vol. 155, p. 106175. https://doi.org/10.1016/j.conengprac.2024.106175. [5]. Xu, Q. and Y. Lin. Research on High-Precision Motion Planning of Large Multi-Arm Rock Drilling Robot Based on Multi-Strategy Sampling Rapidly Exploring Random Tree. Sensors, 2025, vol. 25, no. 9, p. 2654. [6]. Jafari, A.H., R. Dhaouadi, and R. Jafari. Enhanced precision in robot arm positioning: A nonlinear damping approach for flexible joint manipulators. IET Control Theory & Applications, 2024, vol. 18, no. 15, pp. 1968-1976. https://doi.org/10.1049/cth2.12707. [7]. Lee, C.S., Y.H. Huang, and I.W. Lan. Hardware-in-the-Loop Test Case Specification for Verification of Software Safety Requirements in the Context of ISO 26262. in 2018 International Conference of Electrical and Electronic Technologies for Automotive. 2018. [8]. Singh, K. Design of Sliding Mode PID Controller with Improved reaching laws for Nonlinear Systems. ArXiv, 2022, abs/2207.11129. [9]. Wu, L., R. Crawford, and J. Roberts. Geometric interpretation of the general POE model for a serial-link robot via conversion into D-H parameterization. in 2019 International Conference on Robotics and Automation (ICRA). 2019. [10]. 林政君, "六軸機械手臂之三維模型的軌跡建構", 碩士論文, 電機工程學系碩士班, 淡江大學. 2016. [11]. Talli, A. and V.K. V Meti. Design, simulation, and analysis of a 6-axis robot using robot visualization software. IOP Conference Series: Materials Science and Engineering, 2020, vol. 872, no. 1, p. 012040.https://doi.org/10.1088/1757-899X/872/1/012040. [12]. Satya Durga Manohar Sahu, V., P. Samal, and C. Kumar Panigrahi. Modelling, and control techniques of robotic manipulators: A review. Materials Today: Proceedings, 2022, vol. 56, pp. 2758-2766. https://doi.org/10.1016/j.matpr.2021.10.009. [13]. Unity Technologies. Unity Industry Solutions. 2024; Available from: https://unity.com/solutions. [14]. Unity Technologies. Unity Robotics Hub: Pick and Place Tutorial. 2021; Available from: https://github.com/Unity-Technologies/Unity-Robotics-Hub/tree/main/tutorials/pick_and_place. [15]. Paljug, E. and Y. Xiaoping. Experimental study of two robot arms manipulating large objects. IEEE Transactions on Control Systems Technology, 1995, vol. 3, no. 2, pp. 177-188. https://doi.org/10.1109/87.388126. [16]. Arduino. Getting Started with Braccio (Retired). [17]. TDK Corporation. MPU-6050 6-axis MotionTracking Device Datasheet, 2021.https://www.alldatasheet.com/datasheet-pdf/view/1132807/TDK/MPU-6050.html. [18]. Patidar, V. and R. Tiwari. Survey of robotic arm and parameters. in 2016 International Conference on Computer Communication and Informatics (ICCCI). 2016. [19]. Xiang, W., Zhang, Y., Liu, Q., & Chen, L. Research on End-Effector Position Error Compensation of Industrial Robotic Arm Based on ECOA-BP. Sensors, 2025, vol. 25, no. 2, p. 378. [20]. 黃柏浩, "疊代學習控制應用於六軸機器手臂之軌跡追蹤", 碩士論文, 電機與控制工程系所, 國立交通大學, 2016. [21]. Kiam Heong, A., G. Chong, and L. Yun. PID control system analysis, design, and technology. IEEE Transactions on Control Systems Technology, 2005, vol. 13, no. 4, pp. 559-576. https://doi.org/10.1109/TCST.2005.847331. [22]. Joseph, S. B., Bassi, S., Singh, D., Batra, R., & Kumar, A. Metaheuristic algorithms for PID controller parameters tuning: review, approaches and open problems. Heliyon, 2022, vol. 8, no. 5, p. e09399. https://doi.org/10.1016/j.heliyon.2022.e09399. [23]. Raafat, S. and R. Akmeliawati. Survey on Robust Control of Precision Positioning Systems. Recent Patents on Mechanical Engineering, 2012, vol. 5.https://doi.org/10.2174/2212797611205010055. [24]. Islam, S. and X.P. Liu. Robust Sliding Mode Control for Robot Manipulators. IEEE Transactions on Industrial Electronics, 2011, vol. 58, no. 6, pp. 2444-2453. https://doi.org/10.1109/TIE.2010.2062472. [25]. Rsetam, K., Z. Cao, and Z. Man. Hierarchical sliding mode control applied to a single-link flexible joint robot manipulator. in 2016 International Conference on Advanced Mechatronic Systems (ICAMechS). 2016. [26]. Ibrahim, K. and A.B. Sharkawy. A hybrid PID control scheme for flexible joint manipulators and a comparison with sliding mode control. Ain Shams Engineering Journal, 2018, vol. 9, no. 4, pp. 3451-3457. https://doi.org/10.1016/j.asej.2018.01.004. [27]. Williams, D., H.H. Khodaparast, and S. Jiffri. Active vibration control of an equipment mounting link for an exploration robot. Applied Mathematical Modelling, 2021, vol. 95, pp. 524-540. https://doi.org/10.1016/j.apm.2021.02.016. [28]. Williams, D., Khodaparast, H. H., & Smith, A. Active vibration control using piezoelectric actuators employing practical components. Journal of Vibration and Control, 2019, vol. 25, pp. 2784 - 2798. [29]. Özer, A. and S. Eren Semercigil. An event-based vibration control for a two-link flexible robotic arm: Numerical and experimental observations. Journal of Sound and Vibration, 2008, vol. 313, no. 3, pp. 375-394. https://doi.org/10.1016/j.jsv.2006.09.021. [30]. PCB Piezotronics, I., Model 356A32 Installation and Operating Manual. Depew, NY. [31]. Lessard, J., Dupont, F., Tremblay, R., & Nguyen, L.. Characterization, modeling and vibration control of a flexible joint for a robotic system. Journal of Vibration and Control, 2014, vol. 20, no. 6, pp. 943-960. https://doi.org/10.1177/1077546312466884. [32]. Garcia-Perez, O.A., G. Silva-Navarro, and J.F. Peza-Solis. Flexible-link robots with combined trajectory tracking and vibration control. Applied Mathematical Modelling, 2019, vol. 70, pp. 285-298. https://doi.org/10.1016/j.apm.2019.01.035. [33]. Wang, M., Zhang, Y., Li, Q., & Liu, H. Investigation of nonlinear magnetic stiffness based thin-layer stacked piezoelectric generators with a force-amplification structure. Thin-Walled Structures, 2024, vol. 195, p. 111525. https://doi.org/10.1016/j.tws.2023.111525. [34]. Peng, Y., Zhang, L., Wang, M., & Liu, H. Investigation of frequency-up conversion effect on the performance improvement of stack-based piezoelectric generators. Renewable Energy, 2021, vol. 172, pp. 551-563. https://doi.org/10.1016/j.renene.2021.03.064. [35]. Ko, P.-J., W. Yen-Po, and S.-C. and Tien. Inverse-feedforward and robust-feedback control for high-speed operation on piezo-stages. International Journal of Control, 2013, vol. 86, no. 2, pp. 197-209. https://doi.org/10.1080/00207179.2012.721568. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98836 | - |
| dc.description.abstract | 隨著21世紀邁入智慧高科技時代,工業4.0浪潮在人工智慧、物聯網與大數據等技術推動下,促使傳統人工作業逐漸朝向自動化生產轉型。機械手臂憑藉其高自由度、高能效與精確控制等優勢,已成為現代智慧工廠中關鍵性自動化設備,廣泛應用於物件抓取、搬運、焊接與高精密組裝等任務中。針對多軸機械手臂系統常見的非線性與動態不確定性特性,本研究提出一套結合滑模控制(Sliding Mode Control, SMC)與比例-積分-微分控制(PID)的複合式控制策略,藉以提升系統穩定性與軌跡追蹤精度。
本研究引入雙指標追蹤策略(Dual-Index Tracking Strategy),整合虛擬軌跡規劃(Pre-Pointer)與實體軌跡執行(Post-Pointer)兩階段控制機制,以進一步強化動態回應能力與控制穩健性。透過STM32F407微控制器與Arduino所構建之硬體平台,並結合MATLAB模擬系統進行實驗驗證,結果顯示:本控制架構相較於PID控制器,穩定時間從17.805秒顯著縮短至6.24秒,X軸與Y軸超越量分別降低81.25%與87.5%,而穩態誤差亦由0.9848mm明顯減少至0.1183mm,展現出優異的控制性能與系統響應特性。 此外,透過Modal 356A32壓電式加速度感測器所擷取之振動訊號,並結合FFT所進行之頻域分析,亦可作為後續振動抑制與智慧診斷系統開發之依據,進一步拓展本研究於智慧控制與穩健系統設計領域之應用潛力。 綜合上述成果,所提出之複合控制架構具備高度穩定性、即時性與系統彈性,具潛力應用於智慧製造、醫療手術機器人以及高精密自動化生產線等領域,對未來先進製程與智慧系統之發展具有高度應用價值與實務貢獻。 | zh_TW |
| dc.description.abstract | As the world enters the era of intelligent high technology, the wave of Industry 4.0-driven by artificial intelligence, the Internet of Things (IoT), and big data—has accelerated the transformation of traditional manual operations toward automated production. Robotic arms have emerged as critical components in smart factories due to their high degrees of freedom, energy efficiency, and precise controllability, and are widely applied in object manipulation, handling, welding, and precision assembly.
To address the nonlinearities and dynamic uncertainties in multi-axis robotic arm systems, this study proposes a hybrid control strategy integrating Sliding Mode Control (SMC) with Proportional–Integral–Derivative (PID) control to enhance system stability and trajectory tracking. A Dual-Index Tracking Strategy combining virtual trajectory planning (Pre-Pointer) and physical trajectory execution (Post-Pointer) is also introduced to improve dynamic response and control robustness. The system was implemented on a hardware platform using an STM32F407 microcontroller and Arduino, and validated via MATLAB/Simulink simulation. Results show that compared to conventional PID control, the proposed scheme reduced settling time from 17.805 to 6.24 seconds, decreased X-axis and Y-axis overshoot by 81.25% and 87.5%, and lowered steady-state error from 0.9848 mm to 0.1183 mm, demonstrating superior control performance. Additionally, vibration signals collected from the end-effector using a Modal 356A32 piezoelectric accelerometer were analyzed via Fast Fourier Transform (FFT), providing a basis for future development in vibration suppression and intelligent diagnostics. In summary, the proposed control architecture offers high stability, responsiveness, and flexibility, with strong potential for applications in smart manufacturing, surgical robotics, and precision automation. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-08-19T16:23:22Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-08-19T16:23:22Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 致謝.......................................................................................i
中文摘要..................................................................................ii ABSTRACT................................................................................iii 目次......................................................................................iv 圖次.....................................................................................vii 表次......................................................................................xv 第1章 緒論.................................................................................1 1.1 前言..................................................................................1 1.2 研究背景與動機.........................................................................2 1.3 研究方法..............................................................................3 1.4 文獻回顧..............................................................................5 1.4.1 機械手臂技術發展歷程................................................................5 1.4.2 機構型式與關節結構分類..............................................................6 1.4.3 多軸運動建模技術與控制策略發展.......................................................7 1.4.4 Unity在機器人模擬與控制上的應用......................................................9 1.5 論文架構.............................................................................11 第2章 多軸機械手臂系統平台架構..............................................................13 2.1 平台架構與系統分析....................................................................13 2.1.1 平台架構..........................................................................13 2.1.2 系統分析..........................................................................23 2.2 多軸機械手臂之機構連桿的動力學.........................................................26 2.2.1 空間座標之數學式推導...............................................................26 2.2.2 控制系統運動力學...................................................................29 2.2.3 關節之動態方程式...................................................................31 2.3 多軸機械手臂運動學之分析與向量推導.....................................................32 2.3.1 直角坐標空間之分析.................................................................32 2.3.2 D-H轉換矩陣之分析與推導............................................................34 2.4 多軸機械手臂之空間姿態軌跡規劃及控制理論................................................36 2.4.1 關節空間軌跡(順向運動學)...........................................................36 2.4.2 直角空間軌跡(逆向運動學)...........................................................39 2.5 控制器介紹...........................................................................44 2.5.1 PID控制器.........................................................................44 2.5.2 SMC控制器.........................................................................46 第3章 多軸機械手臂實驗架構與控制器設計.......................................................51 3.1 多軸機械手臂末端之運動軌跡追蹤系統.....................................................51 3.1.1 控制系統整體架構與混合控制策略設計..................................................51 3.1.2 Sliding Mode Control with PID 控制設計............................................53 3.2 系統模擬軟體與圖像化設計..............................................................57 3.2.1 模擬軟體平台建構與功能說明..........................................................57 3.2.2 MATLAB/Simulink程式開發...........................................................59 3.3 雙指標策略追蹤之SMC+PID融合控制演算法..................................................60 3.3.1 雙指標策略追蹤.....................................................................63 3.3.2 利用模擬演算法Pre-Pointer(Pre-PEE(*T))進行運動軌跡預測..............................67 3.3.3 實現Post-Pointer(Post-PEE(**Speed))運動軌跡目標位置之高精度定位.....................71 3.4 SMC+PID混和控制器之最佳化控制.........................................................81 3.5 雙指標策略結合SMC+PID之速率追蹤與定位演算法.............................................87 3.5.1 結合SMC+PID控制器與關節角速度控制之閉迴路系統........................................87 3.5.2 韌體演算法(Firmware Algorithm and UML Flowchart)..................................89 第4章 多軸機械手臂振動分析.................................................................95 4.1 多軸機械手臂末端之低頻振動訊號.........................................................95 4.1.1 振動來源與特性.....................................................................95 4.1.2 振動訊號量測與分析方法.............................................................97 4.2 多軸機械手臂末端低頻振動訊號頻譜分析...................................................100 4.2.1 頻譜分析技術.....................................................................100 4.2.2 有限元素法模擬分析................................................................101 第5章 多軸機械手臂之實驗結果...............................................................103 5.1 多軸機械手臂空間座標控制之運動軌跡追蹤.................................................103 5.1.1 機械手臂各軸在低/高速運動控制器性能比較.............................................103 5.1.2 含加減速機制之PID控制器實驗結果....................................................117 5.1.3 含加減速機制之SMC+PID控制器實驗結果................................................120 5.1.4 雷射軌跡追蹤實驗結果..............................................................128 5.2 多軸機械手臂平台之末端振動............................................................130 5.2.1 振動量測與分析...................................................................130 第6章 結論與未來展望......................................................................136 6.1 結論................................................................................136 6.2 未來展望............................................................................137 REFERENCES..............................................................................140 附錄一...................................................................................143 附錄二...................................................................................144 附錄三...................................................................................145 附錄四...................................................................................153 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 多軸機械手臂 | zh_TW |
| dc.subject | 滑模控制(SMC) | zh_TW |
| dc.subject | PID控制 | zh_TW |
| dc.subject | 雙指標策略演算法 | zh_TW |
| dc.subject | 振動分析 | zh_TW |
| dc.subject | 精密定位 | zh_TW |
| dc.subject | 訊號處理 | zh_TW |
| dc.subject | Vibration analysis | en |
| dc.subject | Sliding Mode Control | en |
| dc.subject | PID Controller | en |
| dc.subject | Signal Processing | en |
| dc.subject | Precise positioning | en |
| dc.subject | Dual Index Tracking Strategy | en |
| dc.subject | Multi-Axis Robotic Arm | en |
| dc.title | 基於雙指標策略追蹤之SMC-PID控制演算法結合壓電感測應用於多軸機械手臂振動分析與精密定位之研究 | zh_TW |
| dc.title | A Study on the Application of an SMC-PID Control Algorithm Based on a Dual-Index Tracking Strategy Combined with Piezoelectric Sensing for Vibration Analysis and Precision Positioning of a Multi-Axis Robotic Arm | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.coadvisor | 許聿翔 | zh_TW |
| dc.contributor.coadvisor | Yu-Hsiang Hsu | en |
| dc.contributor.oralexamcommittee | 吳文中;柯文清;謝志文 | zh_TW |
| dc.contributor.oralexamcommittee | Wen-Jong Wu;Wen-Ching Ke;Jr-Wen Shie | en |
| dc.subject.keyword | 多軸機械手臂,滑模控制(SMC),PID控制,雙指標策略演算法,振動分析,精密定位,訊號處理, | zh_TW |
| dc.subject.keyword | Multi-Axis Robotic Arm,Sliding Mode Control,PID Controller,Dual Index Tracking Strategy,Vibration analysis,Precise positioning,Signal Processing, | en |
| dc.relation.page | 161 | - |
| dc.identifier.doi | 10.6342/NTU202504064 | - |
| dc.rights.note | 未授權 | - |
| dc.date.accepted | 2025-08-14 | - |
| dc.contributor.author-college | 工學院 | - |
| dc.contributor.author-dept | 工程科學及海洋工程學系 | - |
| dc.date.embargo-lift | N/A | - |
| 顯示於系所單位: | 工程科學及海洋工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-2.pdf 未授權公開取用 | 7.96 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
