Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 數學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98835
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor李志煌zh_TW
dc.contributor.advisorJhih-Huang Lien
dc.contributor.author李耘人zh_TW
dc.contributor.authorYun-Ren Lien
dc.date.accessioned2025-08-19T16:23:07Z-
dc.date.available2025-08-20-
dc.date.copyright2025-08-19-
dc.date.issued2025-
dc.date.submitted2025-08-11-
dc.identifier.citationJ. Baik, P. Deift, and K. Johansson. On the distribution of the length of the longest increasing subsequence of random permutations. J. Amer. Math. Soc., 12(4):1119 1178, 1999.
T. Bodineau and J. Martin. A universality property for last-passage percolation paths close to the axis. Electron. Comm. Probab., 10:105–112, 2005.
P. L. Ferrari and H. Spohn. Last branching in directed last passage percolation. Markov Process. Related Fields, 9(2):323–339, 2003.
J. M. Hammersley. A few seedlings of research. In Proceedings of the Sixth Berkeley Symposium on Mathematical Statistics and Probability (Univ. California, Berkeley, Calif., 1970/1971), Vol. I: Theory of statistics, pages 345–394. Univ. California Press, Berkeley, CA, 1972.
K. Johansson. Transversal fluctuations for increasing subsequences on the plane. Probab. Theory Related Fields, 116(4):445–456, 2000.
J. F. C. Kingman. Poisson processes, volume 3 of Oxford Studies in Probability. The Clarendon Press, Oxford University Press, New York, 1993.
C. A. Tracy and H. Widom. Level-spacing distributions and the Airy kernel. Comm. Math. Phys., 159(1):151–174, 1994.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98835-
dc.description.abstract本論文探討在最終滲流模型(Last-Passage Percolation, LPP)中,最大路徑的橫向波動行為。LPP 模型描述的是在一個離散隨機環境中,從起點到終點所能取得的最大權重路徑。我們探討的焦點在於:當起終點距離與格點密度趨近無限時,最佳路徑偏離對角線的程度。
為了分析此現象,我們研究了特定 LPP 在極限下的行為,並證明其會收斂至帕松點過程(Poisson Point Process, PPP)。藉由建立 PPP 與最長遞增子序列模型(Longest Increasing Subsequence, LIS)之間的對應關係,我們引用 LIS 中已知的分布結果(包含 Tracy–Widom 分布),來分析 PPP 中路徑的橫向波動行為。我們闡明了 PPP 中的橫向波動指數為$\xi=2/3$,並解釋 LPP 在極限下同樣滿足此指數。
zh_TW
dc.description.abstractThis thesis investigates the transversal fluctuations of maximal paths in the last-passage percolation (LPP) model. The LPP model describes the path of maximal weight in a discrete, random environment, typically represented as a lattice with i.i.d. random weights. We focus on understanding how much the optimal path deviates from the diagonal as the lattice becomes increasingly refined.
To analyze this behavior, we study the scaling limit of specific LPP models and its convergence to the Poisson point process (PPP). By establishing a correspondence between PPP and the longest increasing subsequence (LIS) model, we employ known distributional results of LIS, including the Tracy–Widom distribution, to evaluate the transversal fluctuation behavior in PPP. We elucidate that the transversal fluctuation exponent of PPP is $\xi=2/3$, and demonstrate that LPP shares the same exponent in the scaling limit.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-08-19T16:23:07Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-08-19T16:23:07Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontentsVerification Letter from the Oral Examination Committee i
摘要 iii
Abstract v
Contents vii
List of Figures ix
Denotation xi
Chapter 1 Introduction 1
Chapter 2 Different Models 5
2.1 Last-Passage Percolation (LPP) 5
2.2 Poisson Point Process (PPP) 7
2.3 Longest Increasing Subsequence (LIS) 9
2.4 Relations Between These Models 10
Chapter 3 (PPP) and (LIS) 13
3.1 Large n Behavior 13
3.1.1 For (LIS) 13
3.1.2 For d(w,w′) 15
3.2 Transversal Fluctuations 16
3.2.1 Some Common Setup 16
3.2.2 ξ≤2/3 18
3.2.3 ξ≥2/3 25
Chapter 4 (LPP) and (PPP) 35
4.1 Convergence 35
4.2 (LPP)’s Results 39
References 41
-
dc.language.isoen-
dc.subject帕松點過程zh_TW
dc.subject最終滲流模型zh_TW
dc.subject最長遞增子序列zh_TW
dc.subjectlast-passage percolationen
dc.subjectlongest increasing subsequenceen
dc.subjectPoisson point processen
dc.title探討最終滲流模型的橫向波動zh_TW
dc.titleThe Way to Study Transversal Fluctuations in Last-passage Percolationen
dc.typeThesis-
dc.date.schoolyear113-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee陳冠宇;許柏翰zh_TW
dc.contributor.oralexamcommitteeGuan-Yu Chen;Po-Han Hsuen
dc.subject.keyword最終滲流模型,帕松點過程,最長遞增子序列,zh_TW
dc.subject.keywordlast-passage percolation,Poisson point process,longest increasing subsequence,en
dc.relation.page42-
dc.identifier.doi10.6342/NTU202503994-
dc.rights.note同意授權(限校園內公開)-
dc.date.accepted2025-08-14-
dc.contributor.author-college理學院-
dc.contributor.author-dept數學系-
dc.date.embargo-lift2025-08-20-
顯示於系所單位:數學系

文件中的檔案:
檔案 大小格式 
ntu-113-2.pdf
授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務)
2.48 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved