請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98835完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 李志煌 | zh_TW |
| dc.contributor.advisor | Jhih-Huang Li | en |
| dc.contributor.author | 李耘人 | zh_TW |
| dc.contributor.author | Yun-Ren Li | en |
| dc.date.accessioned | 2025-08-19T16:23:07Z | - |
| dc.date.available | 2025-08-20 | - |
| dc.date.copyright | 2025-08-19 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-08-11 | - |
| dc.identifier.citation | J. Baik, P. Deift, and K. Johansson. On the distribution of the length of the longest increasing subsequence of random permutations. J. Amer. Math. Soc., 12(4):1119 1178, 1999.
T. Bodineau and J. Martin. A universality property for last-passage percolation paths close to the axis. Electron. Comm. Probab., 10:105–112, 2005. P. L. Ferrari and H. Spohn. Last branching in directed last passage percolation. Markov Process. Related Fields, 9(2):323–339, 2003. J. M. Hammersley. A few seedlings of research. In Proceedings of the Sixth Berkeley Symposium on Mathematical Statistics and Probability (Univ. California, Berkeley, Calif., 1970/1971), Vol. I: Theory of statistics, pages 345–394. Univ. California Press, Berkeley, CA, 1972. K. Johansson. Transversal fluctuations for increasing subsequences on the plane. Probab. Theory Related Fields, 116(4):445–456, 2000. J. F. C. Kingman. Poisson processes, volume 3 of Oxford Studies in Probability. The Clarendon Press, Oxford University Press, New York, 1993. C. A. Tracy and H. Widom. Level-spacing distributions and the Airy kernel. Comm. Math. Phys., 159(1):151–174, 1994. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98835 | - |
| dc.description.abstract | 本論文探討在最終滲流模型(Last-Passage Percolation, LPP)中,最大路徑的橫向波動行為。LPP 模型描述的是在一個離散隨機環境中,從起點到終點所能取得的最大權重路徑。我們探討的焦點在於:當起終點距離與格點密度趨近無限時,最佳路徑偏離對角線的程度。
為了分析此現象,我們研究了特定 LPP 在極限下的行為,並證明其會收斂至帕松點過程(Poisson Point Process, PPP)。藉由建立 PPP 與最長遞增子序列模型(Longest Increasing Subsequence, LIS)之間的對應關係,我們引用 LIS 中已知的分布結果(包含 Tracy–Widom 分布),來分析 PPP 中路徑的橫向波動行為。我們闡明了 PPP 中的橫向波動指數為$\xi=2/3$,並解釋 LPP 在極限下同樣滿足此指數。 | zh_TW |
| dc.description.abstract | This thesis investigates the transversal fluctuations of maximal paths in the last-passage percolation (LPP) model. The LPP model describes the path of maximal weight in a discrete, random environment, typically represented as a lattice with i.i.d. random weights. We focus on understanding how much the optimal path deviates from the diagonal as the lattice becomes increasingly refined.
To analyze this behavior, we study the scaling limit of specific LPP models and its convergence to the Poisson point process (PPP). By establishing a correspondence between PPP and the longest increasing subsequence (LIS) model, we employ known distributional results of LIS, including the Tracy–Widom distribution, to evaluate the transversal fluctuation behavior in PPP. We elucidate that the transversal fluctuation exponent of PPP is $\xi=2/3$, and demonstrate that LPP shares the same exponent in the scaling limit. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-08-19T16:23:07Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-08-19T16:23:07Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | Verification Letter from the Oral Examination Committee i
摘要 iii Abstract v Contents vii List of Figures ix Denotation xi Chapter 1 Introduction 1 Chapter 2 Different Models 5 2.1 Last-Passage Percolation (LPP) 5 2.2 Poisson Point Process (PPP) 7 2.3 Longest Increasing Subsequence (LIS) 9 2.4 Relations Between These Models 10 Chapter 3 (PPP) and (LIS) 13 3.1 Large n Behavior 13 3.1.1 For (LIS) 13 3.1.2 For d(w,w′) 15 3.2 Transversal Fluctuations 16 3.2.1 Some Common Setup 16 3.2.2 ξ≤2/3 18 3.2.3 ξ≥2/3 25 Chapter 4 (LPP) and (PPP) 35 4.1 Convergence 35 4.2 (LPP)’s Results 39 References 41 | - |
| dc.language.iso | en | - |
| dc.subject | 帕松點過程 | zh_TW |
| dc.subject | 最終滲流模型 | zh_TW |
| dc.subject | 最長遞增子序列 | zh_TW |
| dc.subject | last-passage percolation | en |
| dc.subject | longest increasing subsequence | en |
| dc.subject | Poisson point process | en |
| dc.title | 探討最終滲流模型的橫向波動 | zh_TW |
| dc.title | The Way to Study Transversal Fluctuations in Last-passage Percolation | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 陳冠宇;許柏翰 | zh_TW |
| dc.contributor.oralexamcommittee | Guan-Yu Chen;Po-Han Hsu | en |
| dc.subject.keyword | 最終滲流模型,帕松點過程,最長遞增子序列, | zh_TW |
| dc.subject.keyword | last-passage percolation,Poisson point process,longest increasing subsequence, | en |
| dc.relation.page | 42 | - |
| dc.identifier.doi | 10.6342/NTU202503994 | - |
| dc.rights.note | 同意授權(限校園內公開) | - |
| dc.date.accepted | 2025-08-14 | - |
| dc.contributor.author-college | 理學院 | - |
| dc.contributor.author-dept | 數學系 | - |
| dc.date.embargo-lift | 2025-08-20 | - |
| 顯示於系所單位: | 數學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-2.pdf 授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務) | 2.48 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
