請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98831完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 蔡曜陽 | zh_TW |
| dc.contributor.advisor | Yao-Yang Tsai | en |
| dc.contributor.author | 王瓊儀 | zh_TW |
| dc.contributor.author | Chiung-Yi Wang | en |
| dc.date.accessioned | 2025-08-19T16:22:06Z | - |
| dc.date.available | 2025-08-20 | - |
| dc.date.copyright | 2025-08-19 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-08-13 | - |
| dc.identifier.citation | [1] D. Bäuerle, “Chemical processing with lasers: Recent developments,” Applied Physics B, vol. 46, pp. 261–270, 1988.
[2] J. Heitz, X. Z. Wang, P. Schwab, D. Bäuerle, and L. Schultz, “Krf laser–induced ablation and patterning of y–ba–cu–o films,” Journal of Applied Physics, vol. 68, p.2512, 1990. [3] B. Wang, P. Wang, J. Song, Y. C. Lam, H. Song, Y. Wang, and S. Liu, “A hybrid machine learning approach to determine the optimal processing window in femtosecond laser-induced periodic nanostructures,” Journal of Materials Processing Technology, vol. 308, p. 117716, 2022. [4] R. Thomas, E. Westphal, G. Schnell, and H. Seitz, “Machine learning classification of self-organized surface structures in ultrashort-pulse laser processing based on light microscopic images,” Micromachines, vol. 15, no. 4, p. 491, 2024. [5] W. T. Silfvast, “Lasers,” in Encyclopedia of Physical Science and Technology (Third Edition), R. A. Meyers, Ed. Academic Press, 2003, pp. 267–281. [6] C. Janiesch, P. Zschech, and K. Heinrich, “Machine learning and deep learning,” Electronic Markets, vol. 31, pp. 685–695, 2021. [7] GeeksforGeeks. (2025) Types of autoencoders. [Online]. Available: https://www.geeksforgeeks.org/numpy/types-of-autoencoders/ [8] Z. Tong, J. Gao, and D. Yuan, “Advances of deep learning applications in ground-penetrating radar: A survey,” Construction and Building Materials, vol.258, p. 120371, 2020. [9] M. R. Marks, K. Y. Cheong, and Z. Hassan, “A review of laser ablation and dicing of si wafers,” Precision Engineering, vol. 73, pp. 377–408, 2022. [10] 石翊鵬, “雷射彩色打標成品顏色品質控制之研究,” 碩士論文, 國立台灣大學,2024. [11] L. V. Zhigilei, Z. Lin, and D. S. Ivanov, “Atomistic modeling of short pulse laser ablation of metals: Connections between melting, spallation, and phase explosion,”The Journal of Physical Chemistry C, vol. 113, no. 27, pp. 11 892–11 906, 2009. [12] G. Paltauf and P. E. Dyer, “Photomechanical processes and effects in ablation,”Chemical Reviews, vol. 103, no. 2, pp. 487–518, 2003. [13] L. V. Zhigilei and B. J. Garrison, “Microscopic mechanisms of laser ablation of organic solids in the thermal and stress confinement irradiation regimes,” Journal of Applied Physics, vol. 88, no. 3, pp. 1281–1298, 2000. [14] E. Leveugle, D. Ivanov, and L. V. Zhigilei, “Photomechanical spallation of molecular and metal targets: molecular dynamics study,” Applied Physics A, vol. 79, no. 7, pp. 1643–1655, 2004. [15] D. Bäuerle, Nanosecond-Laser Ablation. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011, pp. 237–278. [16] B. Wolff-Rottke, J. Ihlemann, H. Schmidt, and A. Scholl, “Influence of the laser-spot diameter on photo-ablation rates,” Applied Physics A, vol. 60, p. 13,1995. [17] 郭銘誠, 雷射加工能力本位訓練教材:認識雷射基礎光學及光學元件. 台中市:中華民國職業訓練研究發展中心: 行政院勞工委員會職業訓練局, 2001. [18] 盧廷昌, “Led 與ld 製程與應用,” 2024, 新興智慧顯示科技教育聯盟課程教材,國立陽明交通大學光電工程學系. [19] C. H. Townes and A. L. Schawlow, Microwave spectroscopy. Courier Corporation, 2013. [20] X. Pan, L. Zhou, C. Wang, K. Yu, Y. Zhu, M. Yi, L. Wang, S. Wen, W. He, and X. Liang, “Microstructure and residual stress modulation of 7075 aluminum alloy for improving fatigue performance by laser shock peening,” International Journal of Machine Tools and Manufacture, vol. 184, p. 103979, 2023. [21] H. Wang, D. Deng, Z. Zhai, and Y. Yao, “Laser-processed functional surface structures for multi-functional applications-a review,” Journal of Manufacturing Processes, vol. 116, pp. 247–283, 2024. [22] 鄭中維, “飛秒雷射在材料微細加工的應用,” 儀器科技, no. 164, pp. 27–32, 2008. [23] F. A. Müller, C. Kunz, and S. Gräf, “Bio-inspired functional surfaces based on laser-induced periodic surface structures,” Materials, vol. 9, no. 6, p. 476, 2016. [24] X. Luo, S. Yao, H. Zhang, M. Cai, W. Liu, R. Pan, C. Chen, X. Wang, L. Wang, and M. Zhong, “Biocompatible nano-ripples structured surfaces induced by femtosecond laser to rebel bacterial colonization and biofilm formation,” Optics & Laser Technology, vol. 124, p. 105973, 2020. [25] C. U. Brown, C. U. Brown, G. Jacob, A. Possolo, C. Beauchamp, M. Peltz, M. Stoudt, and A. Donmez, The effects of laser powder bed fusion process parameters on material hardness and density for nickel alloy 625. US Department of Commerce, National Institute of Standards and Technology, 2018. [26] M. Ghayoor, K. Lee, Y. He, C. hung Chang, B. K. Paul, and S. Pasebani, “Selective laser melting of 304l stainless steel: Role of volumetric energy density on the microstructure, texture and mechanical properties,” Additive Manufacturing, vol. 32, p. 101011, 2020. [27] K. Guan, Z. Wang, M. Gao, X. Li, and X. Zeng, “Effects of processing parameters on tensile properties of selective laser melted 304 stainless steel,” Materials & Design, vol. 50, pp. 581–586, 2013. [28] T. Kurzynowski, K. Gruber, W. Stopyra, B. Kuźnicka, and E. Chlebus, “Correlation between process parameters, microstructure and properties of 316l stainless steel processed by selective laser melting,” Materials Science and Engineering: A, vol. 718, pp. 64–73, 2018. [29] U. Scipioni Bertoli, A. J. Wolfer, M. J. Matthews, J.-P. R. Delplanque, and J. M.Schoenung, “On the limitations of volumetric energy density as a design parameter for selective laser melting,” Materials & Design, vol. 113, pp. 331–340, 2017. [30] B. Yegnanarayana, Artificial neural networks. PHI Learning Pvt. Ltd., 2009. [31] I. Goodfellow, Y. Bengio, A. Courville, and Y. Bengio, Deep learning. MIT press Cambridge, 2016. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98831 | - |
| dc.description.abstract | 雷射加工技術因具備非接觸式、高加工精度、可改變材料表面特性及環保優勢,近年來在製造領域中扮演著日益重要的角色。隨著對加工後表面品質要求的提升,現有雷射加工技術在加工參數與表面形貌對應關係之資料庫建置方面,仍存在明顯不足。目前市售雷射系統多僅提供表面加工範例,卻未公開完整加工參數資訊,導致使用者需仰賴大量試誤調整,耗時且效率低落。此外,現有研究多集中於特定表面現象,如超疏水性或摩擦性,缺乏針對不同加工條件下全面性表面形貌數據之系統性整合。當前雷射加工表面形貌資料具有以下挑戰,包含形貌變異性高、多重加工參數交互影響,缺乏統一形貌標籤等。
本研究涉及奈秒、皮秒以及飛秒,涵蓋廣泛之脈衝寬度以探討多樣的加工表面形貌,並導入無監督學習進行分類,與常見之先定義標籤後探索表面參數之研究有所不同。提出以掃描間距為條件的兩階段分群策略,歸納出六種語意明確的表面形貌類型,並建構基於自編碼器特徵之無監督式分類模型,有效減少主觀判斷誤差。透過多模態視覺化分析,發現各類型與雷射參數間具高度對應性,並揭示加工參數間之綜效關係與操作窗口,最終建立具語意解釋性與回溯能力之分類系統,可應用於加工優化與品質預測。 | zh_TW |
| dc.description.abstract | Laser processing technology has become increasingly vital in modern manufacturing due to its non-contact nature, high machining precision, capability to modify surface properties, and environmental advantages. With rising demands for post-processing surface quality, current laser processing technologies still face significant limitations in establishing comprehensive databases that correlate processing parameters with surface morphologies. Most commercial laser systems only provide example cases of surface processing without disclosing complete parameter information, forcing users to rely heavily on time-consuming trial-and-error adjustments. Furthermore, existing studies predominantly focus on specific surface phenomena, such as superhydrophobicity or frictional properties, and lack systematic integration of surface morphology data across diverse processing conditions. Presently, surface morphology data in laser processing presents several challenges, including high morphological variability, complex interactions among multiple processing parameters, and the absence of standardized surface morphology labels.
This study investigates nanosecond, picosecond, and femtosecond regimes, covering a broad range of pulse widths to explore diverse laser-induced surface morphologies. Unlike conventional approaches that predefine surface labels before exploring processing parameters, this work adopts an unsupervised learning framework for classification. A two-stage clustering strategy, conditioned on hatch distance, is proposed to derive six semantically distinct surface morphology types. An unsupervised classification model based on autoencoder-extracted features is developed, effectively reducing subjective labeling bias. Through multimodal visual analyses, strong correlations between morphology types and laser parameters are revealed, along with synergistic interactions among processing parameters and their operational windows. Ultimately, this study establishes a semantically interpretable and traceable classification system, which can be utilized for process optimization and quality prediction. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-08-19T16:22:06Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-08-19T16:22:06Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 口試委員審定書 i
致謝 iii 摘要 v Abstract vii 目次 ix 圖次 xi 表次 xv 第一章緒論 1 1.1 前言 1 1.2 研究動機 2 1.3 文獻回顧 3 1.3.1 雷射表面材料去除機制 4 1.3.2 多參數加工條件下的交互效應探討 5 1.3.3 機器學習於雷射表面結構分類與預測之應用趨勢 6 1.4 研究目的 8 1.5 論文架構 9 第二章 基礎理論 11 2.1 雷射概論 11 2.1.1 雷射參數交互效應模型 13 2.2 機器學習概論 14 2.2.1 監督式學習與無監督式學習 15 2.3 自編碼器與圖像特徵學習 15 2.4 資料分群理論與方法 16 第三章 實驗設備與規劃 19 3.1 實驗設備與儀器 19 3.1.1 AgieCharmilles Laser P400U 19 3.1.2 雷射共軛焦顯微鏡KEYENCE VK-9700 21 3.1.3 工件材料 23 3.2 實驗流程與結果量測 24 3.2.1 實驗參數說明 24 3.2.2 參數關係 25 3.2.3 研究之實驗設計 26 3.2.4 實驗流程 27 第四章實驗結果與討論 29 4.1 實驗說明 29 4.2 表面樣本之無監督式特徵壓縮與分群 32 4.2.1 自編碼器架構與特徵萃取 32 4.2.2 初階主分群(k=2)與整體結構觀察 32 4.2.3 二次分群困境與語意瓶頸 34 4.3 兩階段分群與語意分類基礎 38 4.3.1 兩間段分群之各掃描間距分群結果 38 4.3.2 各分類結果對應表 41 4.3.3 各類型代表圖示 44 4.4 參數間關聯性與類型之差異分析 50 4.4.1 各類型中參數分布(Bar Plot 分析) 50 4.4.2 各類型參數分布(Violin Plot 分析) 54 4.4.3 參數間關聯性(Heat Map 分析) 58 第五章 結論與未來展望 67 5.1 各類型樣本特徵綜整 67 5.2 操作窗口準確性驗證 69 5.2.1 條件相似類型之進一步加工測試 78 5.2.2 加工條件一致下形貌不一致之觀察 80 5.3 形貌分類模型與參數對應 81 5.4 未來展望 82 參考文獻 85 附錄 1— 雷射表面 89 1.1 加工表面總表 89 1.2 掃描間距各叢集形貌對比 101 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 機器學習 | zh_TW |
| dc.subject | 加工參數資料庫 | zh_TW |
| dc.subject | 脈衝雷射 | zh_TW |
| dc.subject | 無監督學習 | zh_TW |
| dc.subject | 自編碼器 | zh_TW |
| dc.subject | Autoencoder | en |
| dc.subject | Unsupervised Learning | en |
| dc.subject | Pulsed Laser | en |
| dc.subject | Machine Learning | en |
| dc.subject | Processing Parameter Database | en |
| dc.title | 脈衝雷射加工表面形貌分類系統建構與分析 | zh_TW |
| dc.title | Construction and Analysis of a Surface Morphology Classification System for Pulsed Laser Processing | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 何正榮;柯坤呈 | zh_TW |
| dc.contributor.oralexamcommittee | Jeng-Rong Ho;Kun-Cheng Ke | en |
| dc.subject.keyword | 加工參數資料庫,機器學習,自編碼器,無監督學習,脈衝雷射, | zh_TW |
| dc.subject.keyword | Processing Parameter Database,Machine Learning,Autoencoder,Unsupervised Learning,Pulsed Laser, | en |
| dc.relation.page | 109 | - |
| dc.identifier.doi | 10.6342/NTU202502273 | - |
| dc.rights.note | 未授權 | - |
| dc.date.accepted | 2025-08-14 | - |
| dc.contributor.author-college | 工學院 | - |
| dc.contributor.author-dept | 機械工程學系 | - |
| dc.date.embargo-lift | N/A | - |
| 顯示於系所單位: | 機械工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-2.pdf 未授權公開取用 | 105.22 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
