Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
    • Advisor
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 機械工程學系
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98827
Full metadata record
???org.dspace.app.webui.jsptag.ItemTag.dcfield???ValueLanguage
dc.contributor.advisor張秉純zh_TW
dc.contributor.advisorBiing-Chwen Changen
dc.contributor.author陳妍中zh_TW
dc.contributor.authorYen-chung Chenen
dc.date.accessioned2025-08-19T16:21:15Z-
dc.date.available2025-08-20-
dc.date.copyright2025-08-19-
dc.date.issued2025-
dc.date.submitted2025-08-11-
dc.identifier.citation[1] Polygerinos, P., Lyne, S., Wang, Z., Nicolini, L., Mosadegh, B., Whitesides, G., & Walsh, C. (2013). Towards a soft pneumatic glove for hand rehabilitation. 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems, 1512–1517. https://doi.org/10.1109/IROS.2013.6696549
[2] Tondu, B., & Lopez, P. (2000). Modeling and control of McKibben artificial muscle robot actuators. IEEE Control Systems Magazine, 20(2), 15–38. https://doi.org/10.1109/37.833638
[3] Ridremont, T., Singh, I., Bruzek, B., Jamieson, A., Gu, Y., Merzouki, R., & Wijesundra, M. (2024). Pneumatically actuated soft robotic hand and wrist exoskeleton for motion assistance in rehabilitation. Actuators, 13(5), 180. https://doi.org/10.3390/act13050180
[4] International Organization for Standardization. (1998). ISO 8388:1998 Textiles — Industrial knitting vocabulary. https://www.iso.org/standard/14583.html
[5] Spencer, D. J. (2001). Knitting technology (3rd ed., Chap. 9). Woodhead Publishing.
[6] Calderón, A. A., Ugalde, J. C., Zagal, J. C., & Pérez-Arancibia, N. O. (2016, December). Design, fabrication and control of a multi-material-multi-actuator soft robot inspired by burrowing worms. In Proceedings of the IEEE International Conference on Robotics and Biomimetics (ROBIO) (pp. 31–38). https://doi.org/10.1109/ROBIO.2016.7866330
[7] Zhang, J., Tang, J., Hong, J., Lu, T., & Wang, H. (2014). The design and analysis of pneumatic rubber actuator of soft robotic fish. In Proceedings of the International Conference on Intelligent Robotics and Applications (pp. 320–327).
[8] O’Brien, D., & Lane, D. M. (2001, May). 3D force control system design for a hydraulic parallel bellows continuum actuator. In Proceedings of the IEEE International Conference on Robotics and Automation (Vol. 3, pp. 2375–2380). https://doi.org/10.1109/ROBOT.2001.933047
[9] Pan, M., Yuan, C., Liang, X., Dong, T., Liu, T., Zhang, J., Zou, J., Yang, H., & Bowen, C. (2021). Soft actuators and robotic devices for rehabilitation and assistance. Advanced Intelligent Systems, 4(7), 2100140. https://doi.org/10.1002/aisy.202100140
[10] Xavier, M. S., Fleming, A. J., & Yong, Y. K. (2021, July). Design and control of pneumatic systems for soft robotics: A simulation approach. IEEE Robotics and Automation Letters, 6(3), 5800–5807. https://doi.org/10.1109/LRA.2021.3071174
[11] Xavier, M. S., Fleming, A. J., Yong, Y. K., Tjahjowidodo, T., Kim, S., & Althoefer, K. (2022). Soft pneumatic actuators: A review of design, fabrication, modeling, sensing, control and applications. IEEE Access, 10, 59442–59485. https://doi.org/10.1109/ACCESS.2022.3179589
[12] Ali, H., Noor, S., Bashi, S., & Marhaban, M. H. (2009). A review of pneumatic actuators (modeling and control). Australian Journal of Basic and Applied Sciences, 3(1), 440–454.
[13] Tondu, B. (2012, February). Modelling of the McKibben artificial muscle: A review. Journal of Intelligent Materials Systems and Structures, 23(3), 225–253.
[14] Miao, Y., & Chen, F. (2021, November). Shape optimization of soft pneumatic bellows for high energy density. In Proceedings of the 27th International Conference on Mechatronics and Machine Vision in Practice (M VIP) (pp. 480–485).
[15] Lee, J.-G., & Rodrigue, H. (2019, February). Origami-based vacuum pneumatic artificial muscles with large contraction ratios. Soft Robotics, 6(1), 109–117. https://doi.org/10.1089/soro.2018.0047
[16] Daerden, F., & Lefeber, D. (2002). Pneumatic artificial muscles: Actuators for robotics and automation. European Journal of Mechanical and Environmental Engineering, 47.
[17] Pelrine, R., & Chiba, S. (1992, October). Review of artificial muscle approaches. Review of Artificial Muscle Conference Paper.
[18] Black, S. (2002). Knitwear in fashion (pp. 174–175). Thames & Hudson.
[19] Simonis, K., Gloy, Y.-S., & Gries, T. (2016). Industrie 4.0 - Automation in weft knitting technology. IOP Conference Series: Materials Science and Engineering, 141(1), 012014. https://doi.org/10.1088/1757-899X/141/1/012014
[20] Black, D. (1968, October). Design and performance of weft-knitting machinery (Technical report). Department of Textile Industry, University of Leeds.
[21] Choi, W., & Powell, N. (2005). Three dimensional seamless garment knitting on Vbed flat knitting machines. Journal of Textile and Apparel, Technology and Management, 4(3).
[22] Ball, E. J., Meller, M. A., Chipka, J. B., & Garcia, E. (2016). Modeling and testing of a knitted-sleeve fluidic artificial muscle. Smart Materials and Structures, 25(11), 115024. https://doi.org/10.1088/0964-1726/25/11/115024
[23] Sanchez, V., Mahadevan, K., Ohlson, G., Graule, M., Yuen, M., Teeple, C., McCann, J., Bertoldi, K., & Wood, R. (2023). 3D knitting for pneumatic soft robotics. Advanced Functional Materials, 33(—), Article 202212541. https://doi.org/10.1002/adfm.202212541
[24] Wickramatunge, K., & Leephakpreeda, T. (2010). Study on mechanical behaviors of pneumatic artificial muscle. International Journal of Engineering Science, 48, 188–198. https://doi.org/10.1016/j.ijengsci.2009.08.001
[25] Brackenbury, T. (1992). Knitted clothing technology. Blackwell Science.
[26] Simonis, K., Gloy, Y.-S., & Gries, T. (2017). 3D knitting using large circular knitting machines. IOP Conference Series: Materials Science and Engineering, 254(9), 092004. https://doi.org/10.1088/1757-899X/254/9/092004
[27] Kawabata, S. (1989). In T.-W. Chou & F. K. Ko (Eds.), Textile structural composites (p. 67). Elsevier.
[28] Uyanik, S., Değirmenci, Z., Topalbekiroglu, M., & Geyik, F. (2016). Examining the relation between the number and location of tuck stitches and bursting strength in circular knitted fabrics. Fibres and Textiles in Eastern Europe, 24(3), 114–119. https://doi.org/10.5604/12303666.1170266
[29] Uyanık, S. (2008). Influences of the tuck stitch on the performance of the circular knitted fabrics with single bed (Master’s thesis, University of Gaziantep, Turkey). Textile Engineering Department.
[30] Uyanik, S., & Topalbekiroğlu, M. (2017). The effect of knit structures with tuck stitches on fabric properties and pilling resistance. The Journal of The Textile Institute, 108(1), 1–6. https://doi.org/10.1080/00405000.2016.1269394
[31] Zadekhast, R., & Asayesh, A. (2021). The effect of fabric structure on the compression behavior of rib weft knitted fabrics. Fibers and Polymers, 22, Article 2021. https://doi.org/10.1007/s12221-021-0337-y
[32] Sarybayeva, E., Kuramysova, M., Mukimov, M., Shardarbek, M., Rakhmanova, Z., Makhanbetaliyeva, K., Tashmukhamedov, F., Jurinskaya, I., & Kalmakhanova, M. (2023). Influence of tuck stitches on the physical and mechanical properties of knitted fabrics. Research Journal of Textile and Apparel, 28. https://doi.org/10.1108/RJTA-07-2022-0083
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98827-
dc.description.abstract本研究針對氣動人工肌肉的柔性外套結構進行設計與性能分析,開發一套具針數與掛針樣式模組化調整功能的手搖編織器,並透過系統性實驗探討外套管編織參數對氣動肌肉行程與拉力之影響。首先以四款市售編織器為基礎進行結構比較與改良,最終選定 Embellish Knit 編織器並改裝為可調式針軌設計,實現不同針數與編織方式的快速切換。實驗中考量線材材質與直徑、針數、編織長度及內外管比例等變因,評估其對氣動肌肉之伸長率、支撐力與回復性的影響。
實驗結果顯示,外套管性能受多重編織參數交互影響,其中 1.5 mm 丙烯酸毛線在伸長與回復表現上最穩定,六針編織樣品在伸長率與支撐力之間展現最佳平衡。內外管比例越大則伸長率越高,掛針結構則能進一步提升外套管的回復性與橫向彈性。綜合評估後,最適設計參數組合為使用 1.5 mm 丙烯酸毛線,以六針針軌編織 50 圈,內外管長度比例為-25%。此組合製成之氣動肌肉於 0.3 MPa 時可達50%伸長率與 5 N 支撐力,並展現良好的重現性與穩定性。研究成果不僅建立可再現之實驗流程與編織設計準則,亦為未來柔性致動器與輔具應用提供可擴充之開發機構。
zh_TW
dc.description.abstractThis study focuses on the design and performance analysis of the knitted outer sleeve structure of pneumatic artificial muscles (PAMs). A modular knitting machine was developed with adjustable needle number and tuck stitch patterns. Through systematic experiments, the influence of knitting parameters on the deformation behavior and mechanical performance of the PAMs was evaluated. Based on a comparative analysis of four commercial knitting devices, the Embellish Knit was selected and modified to allow interchangeable needle rails, enabling switching between different configurations.
The experimental variables included yarn material and diameter, number of needles, knitting length, and the length ratio between inner and outer tubes. Results indicate that the mechanical behavior of the knitted sleeve is influenced by the interaction of multiple parameters. Among tested combinations, the 1.5 mm acrylic yarn exhibited the most stable elongation and recovery characteristics. The six-needle configuration provided the best balance between elongation and supporting force. A greater length difference between inner and outer tubes increased extension rate, while the introduction of tuck stitches further improved recovery and transverse elasticity.
The optimal design was identified as using 1.5 mm acrylic yarn with six needles, knitted for 50 rounds, and an inner tube 75% the length of the outer tube. This configuration achieved 50% elongation and 5 N supporting force at 0.3 MPa with high repeatability. The proposed platform offers a reproducible experimental process and design framework, providing a promising foundation for the future development of wearable assistive devices and soft robotic actuators.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-08-19T16:21:15Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-08-19T16:21:15Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents口試委員會審定書 i
誌謝 ii
中文摘要 iii
ABSTRACT iv
目次 v
圖次 vii
表次 x
Chapter 1 導論 1
1.1 研究動機 1
1.2 文獻回顧 2
1.3 研究目標 6
Chapter 2 小型手搖圓形編織器簡介 7
2.1 編織機基本原理 7
2.2 Embellish Knit 編織器 8
2.3 Mei Bo Kai 編織器 9
2.4 Sentro 編織器 11
2.5 AddiEi 編織器 13
2.6 總結與比較 14
Chapter 3 針軌模組化的編織器設計 15
3.1 設計目標與方法概述 15
3.2 三款機構改良實作 15
3.2.1 Embellish Knit編織器改良 16
3.2.2 Sentro編織器改良 18
3.2.3 AddiEi編織器改良 21
3.2.4 改良結果討論 22
3.3 實體設計 24
Chapter 4 致動器參數討論 26
4.1 參數選擇與實驗順序 26
4.2 實驗設置與流程 27
4.3 線材與線徑實驗設計、結果與討論 29
4.4 針數實驗設計、結果與討論 32
4.5 長度實驗設計、結果與討論 36
4.6 內外管長度比例實驗設計、結果與討論 39
4.7 實驗結果總結 45
Chapter 5 掛針對致動器性質影響討論 49
5.1 掛針特性 49
5.2 掛針機構設計 50
5.3 構型實驗 53
5.4 掛針實驗結果 55
5.5 掛針實驗討論 59
Chapter 6 結論 61
REFERENCE 63
-
dc.language.isozh_TW-
dc.subject模組化編織器zh_TW
dc.subject柔性致動器zh_TW
dc.subject氣動人工肌肉zh_TW
dc.subject編織結構zh_TW
dc.subject掛針zh_TW
dc.subjecttuck stitchesen
dc.subjectknitted structureen
dc.subjectpneumatic artificial muscleen
dc.subjectmodular knitting machineen
dc.subjectsoft actuatoren
dc.title模組化手搖編織器設計與氣動人工肌肉編織參數探討zh_TW
dc.titleDesigning a Modulized Hand Knitting Machine and Investigating Knitting Parameters of Pneumatic Artificial Musclesen
dc.typeThesis-
dc.date.schoolyear113-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee詹魁元;尤政平zh_TW
dc.contributor.oralexamcommitteeKuei-Yuan Chan;Cheng-Ping Yuen
dc.subject.keyword柔性致動器,模組化編織器,掛針,編織結構,氣動人工肌肉,zh_TW
dc.subject.keywordsoft actuator,modular knitting machine,tuck stitches,knitted structure,pneumatic artificial muscle,en
dc.relation.page65-
dc.identifier.doi10.6342/NTU202503879-
dc.rights.note同意授權(限校園內公開)-
dc.date.accepted2025-08-13-
dc.contributor.author-college工學院-
dc.contributor.author-dept機械工程學系-
dc.date.embargo-lift2026-09-01-
Appears in Collections:機械工程學系

Files in This Item:
File SizeFormat 
ntu-113-2.pdf
  Restricted Access
3.67 MBAdobe PDFView/Open
Show simple item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved