請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98820完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 林達德 | zh_TW |
| dc.contributor.advisor | Ta-Te Lin | en |
| dc.contributor.author | 程柏勳 | zh_TW |
| dc.contributor.author | Po-Hsun Cheng | en |
| dc.date.accessioned | 2025-08-19T16:19:43Z | - |
| dc.date.available | 2025-08-20 | - |
| dc.date.copyright | 2025-08-19 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-08-11 | - |
| dc.identifier.citation | Abbo, P. M., Kawasaki, J. K., Hamilton, M., Cook, S. C., DeGrandi‐Hoffman, G., Li, W. F., Liu, J., & Chen, Y. P. (2017). Effects of Imidacloprid and Varroa destructor on survival and health of European honey bees, Apis mellifera. Insect science, 24(3), 467-477. https://doi.org/10.1111/1744-7917.12335
Abdollahi, M., Giovenazzo, P., & Falk, T. H. (2022). Automated Beehive Acoustics Monitoring: A Comprehensive Review of the Literature and Recommendations for Future Work. Applied Sciences, 12(8). Abou-Shaara, H., Owayss, A., Ibrahim, Y., & Basuny, N. (2017). A review of impacts of temperature and relative humidity on various activities of honey bees. Insectes Sociaux, 64. https://doi.org/10.1007/s00040-017-0573-8 Akinwande, M. O., Dikko, H. G., & Samson, A. (2015). Variance Inflation Factor: As a Condition for the Inclusion of Suppressor Variable(s) in Regression Analysis. Open Journal of Statistics, Vol.05No.07, 14, Article 62189. https://doi.org/10.4236/ojs.2015.57075 Al-Ghamdi, A., Abou-Shaara, H., & Mohamed, A. (2014). Hatching rates and some characteristics of Yemeni and Carniolan honey bee eggs. JOURNAL OF ENTOMOLOGY AND ZOOLOGY STUDIES, 2, 6-10. Andrijević, N., Urošević, V., Arsić, B., Herceg, D., & Savić, B. (2022). IoT Monitoring and Prediction Modeling of Honeybee Activity with Alarm. Electronics, 11(5). Barron, A. B. (2015). Death of the bee hive: understanding the failure of an insect society. Current Opinion in Insect Science, 10, 45-50. https://doi.org/10.1016/j.cois.2015.04.004 Becher, M., Scharpenberg, H., & Moritz, R. (2009). Pupal developmental temperature and behavioral specialization of honeybee workers (Apis mellifera L.). Journal of comparative physiology. A, Neuroethology, sensory, neural, and behavioral physiology, 195, 673-679. https://doi.org/10.1007/s00359-009-0442-7 Braga, A. R., Gomes, D. G., Rogers, R., Hassler, E. E., Freitas, B. M., & Cazier, J. A. (2020). A method for mining combined data from in-hive sensors, weather and apiary inspections to forecast the health status of honey bee colonies. Computers and Electronics in Agriculture, 169, 105161. https://doi.org/10.1016/j.compag.2019.105161 Brown, M. J. F., Loosli, R., & Schmid-Hempel, P. (2000). Condition-Dependent Expression of Virulence in a Trypanosome Infecting Bumblebees. Oikos, 91(3), 421-427. http://www.jstor.org/stable/3547517 Bujok, B., Kleinhenz, M., Fuchs, S., & Tautz, J. (2002). Hot spots in the bee hive. Die Naturwissenschaften, 89, 299-301. https://doi.org/10.1007/s00114-002-0338-7 Burrill, R. M., & Dietz, A. (1981). THE RESPONSE OF HONEY BEES TO VARIATIONS IN SOLAR RADIATION AND TEMPERATURE [10.1051/apido:19810402]. Apidologie, 12(4), 319-328. https://doi.org/10.1051/apido:19810402 Cardell-Oliver, R., Anwar, O., Keating, A., Datta, A., & Putrino, G. (2022). WE-Bee: Weight Estimator for Beehives Using Deep Learning. Cho, K., Van Merriënboer, B., Gulcehre, C., Bahdanau, D., Bougares, F., Schwenk, H., & Bengio, Y. (2014). Learning phrase representations using RNN encoder-decoder for statistical machine translation. arXiv preprint arXiv:1406.1078. https://doi.org/10.48550/arXiv.1406.1078 Clarke, D., & Robert, D. (2018). Predictive modelling of honey bee foraging activity using local weather conditions. Apidologie, 49(3), 386-396. https://doi.org/10.1007/s13592-018-0565-3 Cook, D., Tarlinton, B., McGree, J. M., Blackler, A., & Hauxwell, C. (2022). Temperature Sensing and Honey Bee Colony Strength. Journal of Economic Entomology, 115(3), 715-723. https://doi.org/10.1093/jee/toac034 Degrandi-Hoffman, G., Spivak, M., & Martin, J. H. (1993). Role of Thermoregulation by Nestmates on the Development Time of Honey Bee (Hymenoptera: Apidae) Queens. Annals of the Entomological Society of America, 86(2), 165-172. https://doi.org/10.1093/aesa/86.2.165 Dsouza, A., & Hegde, S. (2023). HiveLink, an IoT based Smart Bee Hive Monitoring System. arXiv preprint arXiv:2309.12054. https://doi.org/10.48550/arXiv.2309.12054 Edwards-Murphy, F., Magno, M., Whelan, P. M., O’Halloran, J., & Popovici, E. M. (2016). b+WSN: Smart beehive with preliminary decision tree analysis for agriculture and honey bee health monitoring. Computers and Electronics in Agriculture, 124, 211-219. https://doi.org/10.1016/j.compag.2016.04.008 Ferrari, S., Silva, M., Guarino, M., & Berckmans, D. (2008). Monitoring of swarming sounds in bee hives for early detection of the swarming period. Computers and Electronics in Agriculture, 64(1), 72-77. https://doi.org/10.1016/j.compag.2008.05.010 Flores, J. M., Gil-Lebrero, S., Gamiz, V., Rodriguez, M. I., Ortiz, M., & Quiles Latorre, F. (2018). Effect of the climate change on honey bee colonies in a temperate Mediterranean zone assessed through remote hive weight monitoring system in conjunction with exhaustive colonies assessment. Science of The Total Environment, 653. https://doi.org/10.1016/j.scitotenv.2018.11.004 Gil-Lebrero, S., Navas González, F. J., Gámiz López, V., Quiles Latorre, F. J., & Flores Serrano, J. M. (2020). Regulation of Microclimatic Conditions inside Native Beehives and Its Relationship with Climate in Southern Spain. Sustainability, 12(16). Goulson, D. (2002). Effects of Introduced Bees on Native Ecosystems. Annu. Rev. Ecol. Evol. Syst, 34, 1-26. https://doi.org/10.1146/annurev.ecolsys.34.011802.132355 Graham, M. H. (2003). Confronting multicollinearity in ecological multiple regression. Ecology, 84(11), 2809-2815. https://doi.org/10.1890/02-3114 Gray, A., Brodschneider, R., Adjlane, N., Ballis, A., Brusbardis, V., Charrière, J.-D., Chlebo, R., F. Coffey, M., Cornelissen, B., & Amaro da Costa, C. (2019). Loss rates of honey bee colonies during winter 2017/18 in 36 countries participating in the COLOSS survey, including effects of forage sources. Journal of Apicultural Research, 58(4), 479-485. https://doi.org/10.1080/00218839.2019.1615661 Gregorc, A., & Sampson, B. (2019). Diagnosis of Varroa Mite (Varroa destructor) and Sustainable Control in Honey Bee (Apis mellifera) Colonies—A Review. Diversity, 11(12). Hadjur, H., Ammar, D., & Lefèvre, L. (2022). Toward an intelligent and efficient beehive: A survey of precision beekeeping systems and services. Computers and Electronics in Agriculture, 192, 106604. https://doi.org/10.1016/j.compag.2021.106604 Henry, M., Béguin, M., Requier, F., Rollin, O., Odoux, J.-F., Aupinel, P., Aptel, J., Tchamitchian, S., & Decourtye, A. (2012). A Common Pesticide Decreases Foraging Success and Survival in Honey Bees. Science (New York, N.Y.), 336, 348-350. https://doi.org/10.1126/science.1215039 Hepburn, H. R., & Radloff, S. E. (2013). Honeybees of Africa. Himmer, A. (2008). Die Temperaturverhältnisse bei den sozialen Hymenopteren. Biological Reviews, 7, 224-253. https://doi.org/10.1111/j.1469-185X.1962.tb01042.x Ho, I.-C., Lai, Y.-J., Chiang, P.-N., Chen, Y.-F., & Lin, T.-T. (2022). Integration of Multiple Sensors for Beehive Health Status Monitoring and Assessment. 2022 ASABE Annual International Meeting, Imoize, A. L., Odeyemi, S. D., & Adebisi, J. A. (2020). Development of a low-cost wireless bee-hive temperature and sound monitoring system. Indonesian Journal of Electrical Engineering and Informatics (IJEEI), 8(3), 476-485. https://doi.org/10.52549/ijeei.v8i3.2268 Johnson, B. R. (2008). Within-nest temporal polyethism in the honey bee. Behavioral Ecology and Sociobiology, 62, 777-784. https://doi.org/10.1007/s00265-007-0503-2 Khairul Anuar, N. H., Md Yunus, M. A., Baharudin, M. A., Ibrahim, S., & Sahlan, S. (2024). Deep Learning-Driven Predictive Modelling for Optimizing Stingless Beekeeping Yields. Journal of Computing Research and Innovation, 9(2), 244-252. https://doi.org/10.24191/jcrinn.v9i2.451 Kulyukin, V. A., Coster, D., Kulyukin, A. V., Meikle, W., & Weiss, M. (2024). Discrete Time Series Forecasting of Hive Weight, In-Hive Temperature, and Hive Entrance Traffic in Non-Invasive Monitoring of Managed Honey Bee Colonies: Part I. Sensors, 24(19). Li, L., Lu, C., Hong, W., Zhu, Y., Lu, Y., Wang, Y., Xu, B., & Liu, S. (2022). Analysis of temperature characteristics for overwintering bee colonies based on long-term monitoring data. Computers and Electronics in Agriculture, 198, 107104. https://doi.org/10.1016/j.compag.2022.107104 Lundberg, S. M., & Lee, S.-I. (2017). A unified approach to interpreting model predictions. Advances in neural information processing systems, 30. Magnier, B., Ekszterowicz, G., Laurent, J., Rival, M., & Pfister, F. (2018). Bee Hive Traffic Monitoring by Tracking Bee Flight Paths. VISIGRAPP, McLellan, A. R. (1977). Honeybee Colony Weight as an Index of Honey Production and Nectar Flow: A Critical Evaluation. Journal of Applied Ecology, 14(2), 401-408. https://doi.org/10.2307/2402553 Meikle, W. G., Holst, N., Colin, T., Weiss, M., Carroll, M. J., McFrederick, Q. S., & Barron, A. B. (2018). Using within-day hive weight changes to measure environmental effects on honey bee colonies. PLoS One, 13(5), e0197589. https://doi.org/10.1371/journal.pone.0197589 Meikle, W. G., Rector, B. G., Mercadier, G., & Holst, N. (2008). Within-day variation in continuous hive weight data as a measure of honey bee colony activity [10.1051/apido:2008055]. Apidologie, 39(6), 694-707. https://doi.org/10.1051/apido:2008055 Meikle, W. G., & Weiss, M. (2017). Monitoring colony-level effects of sublethal pesticide exposure on honey bees. JoVE (Journal of Visualized Experiments)(129), e56355. Meikle, W. G., Weiss, M., & Stilwell, A. R. (2016). Monitoring colony phenology using within-day variability in continuous weight and temperature of honey bee hives. Apidologie, 47(1), 1-14. https://doi.org/10.1007/s13592-015-0370-1 Michelsen, A., Kirchner, W. H., Andersen, B. B., & Lindauer, M. (1986). The tooting and quacking vibration signals of honeybee queens: a quantitative analysis. Journal of Comparative Physiology A, 158(5), 605-611. https://doi.org/10.1007/BF00603817 Mishra, M., Bhunia, P., Shubham, S., Sen, R., Bhunia, R., Gulia, J., Mondal, T., Zidane, Z., Saha, T., Chacko, A., Raj, R., S, V., & Kaushal, L. (2023). The Impact of Weather Change on Honey Bee Populations and Disease. Journal of Advanced Zoology, 44, 180-190. https://doi.org/10.17762/jaz.v44iS7.2755 Ngo, T.-N., Rustia, D. J., Yang, E.-C., & Lin, T.-T. (2021). Honey Bee Colony Population Daily Loss Rate Forecasting and an Early Warning Method Using Temporal Convolutional Networks. Sensors, 21(11). Ngo, T. N., Rustia, D. J. A., Yang, E.-C., & Lin, T.-T. (2021). Automated monitoring and analyses of honey bee pollen foraging behavior using a deep learning-based imaging system. Computers and Electronics in Agriculture, 187, 106239. https://doi.org/10.1016/j.compag.2021.106239 Ngo, T. N., Wu, K.-C., Yang, E.-C., & Lin, T.-T. (2019). A real-time imaging system for multiple honey bee tracking and activity monitoring. Computers and Electronics in Agriculture, 163, 104841. https://doi.org/10.1016/j.compag.2019.05.050 Nicolson, S. W. (2009). Water homeostasis in bees, with the emphasis on sociality. Journal of Experimental Biology, 212(3), 429-434. https://doi.org/10.1242/jeb.022343 Nolasco, I., & Benetos, E. (2018). To bee or not to bee: Investigating machine learning approaches for beehive sound recognition. arXiv preprint arXiv:1811.06016. https://doi.org/ https://doi.org/10.48550/arXiv.1811.06016 Nolasco, I., Terenzi, A., Cecchi, S., Orcioni, S., Bear, H. L., & Benetos, E. (2019). Audio-based identification of beehive states. ICASSP 2019-2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Olate-Olave, V., Verde, M., Vallejos, L., Raymonda, L., Cortese, M., & Doorn, M. (2021). Bee Health and Productivity in Apis mellifera, a Consequence of Multiple Factors. Veterinary Sciences, 8, 76. https://doi.org/10.3390/vetsci8050076 Oldroyd, B., & Thompson, G. (2006). Behavioural Genetics of the Honey Bee Apis mellifera. Advances in insect physiology, 33, 1-49. https://doi.org/10.1016/S0065-2806(06)33001-9 Palmer, M. J., Moffat, C., Saranzewa, N., Harvey, J., Wright, G. A., & Connolly, C. N. (2013). Cholinergic pesticides cause mushroom body neuronal inactivation in honeybees. Nature Communications, 4(1), 1634. https://doi.org/10.1038/ncomms2648 Robles-Guerrero, A., Saucedo-Anaya, T., González-Ramírez, E., & De la Rosa-Vargas, J. I. (2019). Analysis of a multiclass classification problem by Lasso Logistic Regression and Singular Value Decomposition to identify sound patterns in queenless bee colonies. Computers and Electronics in Agriculture, 159, 69-74. https://doi.org/10.1016/j.compag.2019.02.024 Ruvinga, S., Hunter, G., Duran, O., & Nebel, J.-C. (2023). Identifying Queenlessness in Honeybee Hives from Audio Signals Using Machine Learning. Electronics, 12(7). Schneider, S. S. (1990). Nest characteristics and recruitment behavior of absconding colonies of the African honey bee,Apis mellifera scutellata, in Africa. Journal of Insect Behavior, 3(2), 225-240. https://doi.org/10.1007/BF01417914 Tan Ken, T. K., Bock, F., Fuchs, S., Streit, S., Brockmann, A., & Tautz, J. (2005). Effects of brood temperature on honey bee Apis mellifera wing morphology. Truong, T. H., Nguyen, H. D., Mai, T. Q. A., Nguyen, H. L., Dang, T. N. M., & Phan, T.-T.-H. (2023). A deep learning-based approach for bee sound identification. Ecological Informatics, 78, 102274. https://doi.org/10.1016/j.ecoinf.2023.102274 Winston, M. L. (1991). The biology of the honey bee. Harvard University Press. Wu, V. (2023, 25-28 July 2023). Development of a Predictive Model of Honey Bee Foraging Activity Under Different Climate Conditions. 2023 11th International Conference on Agro-Geoinformatics (Agro-Geoinformatics), IEEE. Zgank, A. (2019). Bee swarm activity acoustic classification for an IoT-based farm service. Sensors, 20(1), 21. https://doi.org/10.3390/s20010021 Ziegler, C., Ueda, R. M., Sinigaglia, T., Kreimeier, F., & Souza, A. M. (2022). Correlation of Climatic Factors with the Weight of an Apis mellifera Beehive. Sustainability, 14(9). | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98820 | - |
| dc.description.abstract | 本研究開發一套基於智慧蜂箱的蜂群健康監測系統,利用多感測器長期蒐集蜂箱內外部環境資料,結合時間序列預測與異常分類模型,實現蜂群重量、進出流量及花粉採集率的精確預測與健康狀態異常偵測。資料來源為 2024 年 9 月至 2025 年 4 月於台灣雲林兩處場域蒐集的感測數據與蜂群檢查表,蜂農每週填寫健康評估表單以標註蜂群狀態,作為機器學習模型的訓練與驗證依據。模型部分採用 GRU 與 SARIMAX 進行單變量與多變量時間序列預測。結果顯示多變量模型在三項目標變數的預測精度均優於單變量模型,其中 GRU 模型在跨蜂箱驗證下的誤差表現最佳,蜂群重量的平均絕對百分比誤差(MAPE)為 0.6%~2.1%,進出流量的 MAPE 為 19%~24.6%,花粉採集率的對稱平均絕對百分比誤差(sMAPE)為 16.7%~31.3%。透過 SHAP 分析進一步辨識影響預測結果的關鍵特徵,模型未出現預測停滯或漂移現象,具備長期穩定性。GRU 二元分類模型在蜂群健康狀態預測的整體準確率達 94%,能有效偵測失王、蜂巢壅擠等關鍵異常事件。系統能夠提供穩定且可靠的數據化蜂群動態洞察,支援早期健康問題識別與精準養蜂管理,提升蜂群存活率與管理效率。 | zh_TW |
| dc.description.abstract | This study presents a smart beehive-based health monitoring system that combines multi-sensor data collection, time-series forecasting, and anomaly detection to monitor honeybee colony health. Data were collected from September 2024 to April 2025 at two apiaries in Yunlin County, Taiwan. Sensor measurements and beekeeper-completed evaluation forms were used to label colony health status for training and validating machine learning models. Two forecasting models, GRU and SARIMAX, were developed to predict hive weight, bee traffic, and pollen collection rate under both univariate and multivariate settings. Experimental results showed that multivariate models consistently outperformed univariate ones, with the multivariate GRU achieving the most stable and generalizable performance. Specifically, during cross-hive validation, the forecasting errors were: a Mean Absolute Percentage Error (MAPE) of 0.6%–2.1% for weight prediction, 19%–24.6% MAPE for bee ingress–egress traffic, and a Symmetric Mean Absolute Percentage Error (sMAPE) of 16.7%–31.3% for pollen collection rate. SHAP-based interpretability analysis further identified the most influential features contributing to model accuracy, and the model exhibited no signs of prediction stagnation or shifting. Additionally, a GRU-based binary classifier for colony health status achieved an overall accuracy of 94%, effectively detecting critical anomalies such as queen loss and hive overcrowding. Overall, the proposed system reliably provides data-driven insights into colony dynamics, enabling early detection of health issues and supporting precision apiculture practices for improved hive management. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-08-19T16:19:43Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-08-19T16:19:43Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 誌謝 i
摘要 ii ABSTRACT iii Tables of Contents v List of Figures x List of Tables xii CHAPTER 1 Introduction 1 CHAPTER 2 Literature Review 6 2.1 Colony Ecology 6 2.1.1 Honeybee Social Structure and Worker Division of Labor 6 2.1.2 Microclimate and Temperature-Humidity Variations 8 2.1.3 Bee Physiology and Its Significance 10 2.1.4 Swarming and Absconding Behavior 12 2.1.5 Impact of Agricultural Diseases and Pests on Bees 14 2.2 Beehive Monitoring 15 2.2.1 Analysis of Weight and Temperature-Humidity Data 15 2.2.2 Analysis of In-Hive Acoustic Data 17 2.2.3 Analysis of Bee and Pollen Traffic 19 2.2.4 Effects of Climatic Factors on Bee Colonies 20 2.3 Studies on Bee Health Status Analysis 22 2.4 Machine Learning Approaches for Beehive Monitoring 24 2.4.1 Selection and Application of Machine Learning Algorithms 24 2.4.2 Colony State Prediction Using Time Series Models 25 CHAPTER 3 Methodology 29 3.1 Smart Multi-Sensor Beehive System 29 3.1.1 Hardware Configuration and Sensor Modules 30 3.1.2 Cloud-Based Data Management and Real-Time Monitoring 32 3.2 Data Collection 35 3.2.1 Experimental field 35 3.2.2 Hive Weight Data 37 3.2.3 Hive Temperature and Humidity 38 3.2.4 Bee and Pollen Traffic Data 39 3.2.5 Audio Data 40 3.2.6 Weather Data 40 3.2.7 Honeybee Colony Checklist 41 3.2.8 Dataset Summary 43 3.2.9 Target Variable Definition and Selection 44 3.3 Data Preprocessing 45 3.3.1 Missing Value Handling 46 3.3.2 Normalization and Outlier Handling 47 3.4 Feature Selection 48 3.4.1 Correlation Analysis 48 3.4.2 Variance Inflation Factor 50 3.5 Time Series Model 51 3.5.1 Gated Recurrent Unit 52 3.5.2 SARIMAX 55 3.6 Model Interpretation and Shifting Detection 58 3.6.1 SHAP-Based Feature Interpretation 58 3.6.2 Stagnation and Forecast Shifting Detection 60 CHAPTER 4 Results and Discussions 63 4.1 Feature Selection Results 63 4.2 Hive Weight Prediction Results 64 4.2.1 Univariate Hive Weight Prediction Results 65 4.2.2 Multivariate Hive Weight Prediction Results 67 4.2.3 Performance Evaluation of Long-Horizon Multi-Step Forecasting 69 4.2.4 Effects of Human Interference on Hive Weight 71 4.3 Bee Traffic Prediction Results 72 4.3.1 Univariate Bee Traffic Prediction Results 73 4.3.2 Multivariate Bee Traffic Prediction Results 75 4.4 Pollen Collection Rate Prediction Results 77 4.4.1 Univariate Pollen Collection Rate Prediction Results 78 4.4.2 Multivariate Pollen Collection Rate Prediction Results 80 4.5 Cross-Location Model Comparison and Generalization 82 4.5.1 Comparative Analysis of Univariate and Multivariate Models Across Two Hive Locations 83 4.5.2 Cross-Hive Evaluation of Multivariate GRU Models 86 4.6 SHAP Analysis and Forecast Shifting Detection 88 4.6.1 Feature Importance in Hive Weight Forecasting 88 4.6.2 Feature Importance in Bee Traffic Forecasting 90 4.6.3 Feature Importance in Pollen Collection Rate Forecasting 92 4.6.4 Forecast Stability Evaluation 94 4.7 Colony Health Status Prediction Results 96 CHAPTER 5 Conclusions 101 5.1 Conclusions 101 5.2 Suggestions 103 References 105 | - |
| dc.language.iso | en | - |
| dc.subject | 機器學習 | zh_TW |
| dc.subject | 時間序列 | zh_TW |
| dc.subject | 蜂箱健康預測 | zh_TW |
| dc.subject | 智慧農業 | zh_TW |
| dc.subject | time series | en |
| dc.subject | smart agriculture | en |
| dc.subject | beehive health prediction | en |
| dc.subject | machine learning | en |
| dc.title | 基於多元感測與機器學習之智慧蜂箱健康狀態預測系統 | zh_TW |
| dc.title | Smart Beehive Health Prediction System Based on Multi-Sensor Data and Machine Learning | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 陳世芳;楊恩誠 | zh_TW |
| dc.contributor.oralexamcommittee | Shih-Fang Chen;En-Cheng Yang | en |
| dc.subject.keyword | 機器學習,時間序列,蜂箱健康預測,智慧農業, | zh_TW |
| dc.subject.keyword | machine learning,time series,beehive health prediction,smart agriculture, | en |
| dc.relation.page | 112 | - |
| dc.identifier.doi | 10.6342/NTU202503964 | - |
| dc.rights.note | 同意授權(全球公開) | - |
| dc.date.accepted | 2025-08-13 | - |
| dc.contributor.author-college | 生物資源暨農學院 | - |
| dc.contributor.author-dept | 生物機電工程學系 | - |
| dc.date.embargo-lift | 2025-08-20 | - |
| 顯示於系所單位: | 生物機電工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-2.pdf | 2.7 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
