請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98819完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 于天立 | zh_TW |
| dc.contributor.advisor | Tian-Li Yu | en |
| dc.contributor.author | 張凱博 | zh_TW |
| dc.contributor.author | Kai-Po Chang | en |
| dc.date.accessioned | 2025-08-19T16:19:28Z | - |
| dc.date.available | 2025-08-20 | - |
| dc.date.copyright | 2025-08-19 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-08-07 | - |
| dc.identifier.citation | [1] M. Arjovsky, S. Chintala, and L. Bottou. Wasserstein generative adversarial networks.In International conference on machine learning, pages 214–223, 2017.
[2] X. Chen, Y. Duan, R. Houthooft, J. Schulman, I. Sutskever, and P. Abbeel. InfoGAN:Interpretable Representation Learning by Information Maximizing Generative Adversarial Nets. Advances in neural information processing systems, 29:2172–2180, 2016. [3] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei. Imagenet: A large-scale hierarchical image database. In 2009 IEEE conference on computer vision and pattern recognition, pages 248–255, 2009. [4] I. J. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville, and Y. Bengio. Generative adversarial nets. Advances in neural information processing systems, 27:2672–2680, 2014. [5] I. J. Goodfellow, J. Shlens, and C. Szegedy. Explaining and harnessing adversarial examples. arXiv preprint arXiv:1412.6572, 2014.66 [6] I. Gulrajani, F. Ahmed, M. Arjovsky, V. Dumoulin, and A. C. Courville. Improved training of wasserstein gans. Advances in neural information processing systems, 30:5767–5777, 2017. [7] I. Higgins, L. Matthey, A. Pal, C. Burgess, X. Glorot, M. Botvinick, S. Mohamed, and A. Lerchner. beta-vae: Learning basic visual concepts with a constrained variational framework. In International conference on learning representations, 2017. [8] G. E. Hinton and R. R. Salakhutdinov. Reducing the dimensionality of data with neural networks. In Science, volume 313, pages 504–507. American Association for the Advancement of Science, 2006. [9] T. Karras, S. Laine, and T. Aila. A style-based generator architecture for generative adversarial networks. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pages 4401–4410, 2019. [10] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied to document recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998. [11] D.-H. Lee et al. Pseudo-label: The simple and efficient semi-supervised learning method for deep neural networks. In Workshop on challenges in representation learning, ICML, volume 3, page 896, 2013. [12] J. Lemley, S. Bazrafkan, and P. Corcoran. Smart Augmentation Learning an Optimal Data Augmentation Strategy. In IEEE Access, volume 5, pages 5858–5869, 2017.67 [13] A. Madry, A. Makelov, L. Schmidt, D. Tsipras, and A. Vladu. Towards deep learning models resistant to adversarial attacks. In International Conference on Learning Representations (ICLR), 2018. [14] L. Mescheder, A. Geiger, and S. Nowozin. Which training methods for GANs do actually converge? In International conference on machine learning, pages 3481–3490, 2018. [15] M. Mirza and S. Osindero. Conditional generative adversarial nets. arXiv preprint arXiv:1411.1784, 2014. [16] E. Robb, W.-S. Chu, A. Kumar, and J.-B. Huang. Few-shot adaptation of generative adversarial networks. arXiv preprint arXiv:2010.11943, 2020. [17] S. T. Roweis and L. K. Saul. Nonlinear dimensionality reduction by locally linear embedding. Science, 290(5500):2323–2326, 2000. [18] L. Schmidt, S. Santurkar, D. Tsipras, K. Talwar, and A. Madry. Adversarially robust generalization requires more data. In Advances in Neural Information Processing Systems, volume 32, pages 5014–5026, Montreal, Canada, 2018. [19] K. Song and Y. Yan. A noise robust method based on completed local binary patterns for hot-rolled steel strip surface defects. Applied Surface Science, 285:858–864,2013.68 [20] K. Sun, Z. Zhu, and Z. Lin. Towards understanding adversarial examples systematically: Exploring data size, task and model factors. arXiv preprint arXiv:1902.11019,2019. [21] Y. Wang, C. Wu, L. Herranz, J. van de Weijer, A. Gonzalez-Garcia, and B. Raducanu. Transferring GANs: generating images from limited data, 2018. [22] S. Wold, K. Esbensen, and P. Geladi. Principal component analysis. Chemometrics and intelligent laboratory systems, 2(1-3):37–52, 1987. [23] M.-J. Wu, J.-S. R. Jang, and J.-L. Chen. Wafer map failure pattern recognition and similarity ranking for large-scale data sets. IEEE Transactions on Semiconductor Manufacturing, 28(1):1–12, 2014. [24] H. Xiao, K. Rasul, and R. Vollgraf. Fashion-MNIST: a novel image dataset for benchmarking machine learning algorithms. arXiv preprint arXiv:1708.07747, 2017. [25] S.-B. Yang and T.-L. Yu. Pseudo-representation labeling semi-supervised learning. arXiv preprint arXiv:2006.00429, 2020. [26] H. Zhang, M. Cisse, Y. N. Dauphin, and D. Lopez-Paz. mixup: Beyond empirical risk minimization. arXiv preprint arXiv:1710.09412, 2017 | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98819 | - |
| dc.description.abstract | 在品質檢測與異常偵測等工業應用中,資料不足與標註成本高昂常限制深度學習模型的效能。深度生成模型,特別是生成對抗網路(Generative Adversarial Networks, GANs),已在影像合成與資料增強方面展現出卓越能力。然而,傳統GAN需大量且多樣化的訓練資料,才能達到穩定且可靠的表現,這在工業領域中往往難以實現。因此,在少量資料條件下訓練的GAN經常出現不穩定性與模式崩潰(mode collapse)問題。
本研究提出一種新穎的方法,透過將傳統隨機雜訊輸入替換為由真實資料經降維技術(包括主成分分析(PCA)與局部線性嵌入(LLE))所提取的結構化嵌入(Structured Embeddings, SEs),以改善在此情境下的資料生成。本方法不修改GAN架構,而是提升潛在空間的資訊量,為模型學習提供具意義的歸納偏差(inductive bias)。 本研究將SE整合至InfoGAN架構中,藉由其可解釋潛變數的學習能力支援可控變異,同時採用包含真實與生成資料的迭代式訓練策略以增強學習成效。實驗結果顯示,所提出方法在生成穩定性、樣本品質及多樣性方面均優於傳統GAN,且在對抗性攻擊情境下展現更佳的魯棒性。 本研究結果證實,結構化潛在空間能有效促進穩定且語意一致的生成,為資料不足之工業環境中的資料驅動學習提供一種具實用性且完整的方法。 | zh_TW |
| dc.description.abstract | In industrial applications such as quality inspection and anomaly detection, data scarcity and high labeling costs often limit the effectiveness of deep learning models. Deep generative models, particularly Generative Adversarial Networks (GANs), have demonstrated remarkable capabilities in image synthesis and data augmentation. However, conventional GANs require large and diverse datasets to achieve stable and reliable performance, which is challenging to obtain in industrial domains. As a result, GANs trained under limited-data conditions frequently suffer from instability and mode collapse.
This thesis proposes a novel approach to improve data generation by replacing the traditional random noise input of the generator with structured embeddings (SEs) derived from real data through dimensionality reduction techniques, including Principal Component Analysis (PCA) and Locally Linear Embedding (LLE). Instead of altering the GAN architecture, the proposed method enhances the informativeness of the latent space, providing a meaningful inductive bias for learning. The SEs are integrated into an InfoGAN architecture to leverage disentangled representation learning and support controlled variation. The training strategy using real and generated data further enhances the learning process. Experimental results demonstrate that the proposed method improves generation stability, sample quality, and diversity, while also enhancing robustness under adversarial conditions. These findings highlight the effectiveness of structured latent spaces for stable and semantically coherent generation, providing a practical and comprehensive approach for improving data-driven learning in limited-data industrial environments. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-08-19T16:19:28Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-08-19T16:19:28Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 致謝 i
中文摘要 iii Abstract v Contents vii List of Figures ix List of Tables xi 1 Introduction 1 2 Background 5 2.1 Generative Adversarial Networks . . . . . . . . . . . . . . . . . . . . . . 6 2.2 Variants of GANs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2.2.1 Improving Training Stability . . . . . . . . . . . . . . . . . . . . 9 2.2.2 Enhancing Representation and Controllability . . . . . . . . . . . 11 2.2.3 Generating Data in Limited Data Regimes . . . . . . . . . . . . . 13 2.2.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 2.3 Dimension Reduction Methods . . . . . . . . . . . . . . . . . . . . . . . 17 2.3.1 Autoencoder . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 2.3.2 Principal Component Analysis (PCA) . . . . . . . . . . . . . . . 19 2.3.3 Locally Linear Embedding (LLE) . . . . . . . . . . . . . . . . . 19 2.4 Commonly Used Data-Efficient Learning Techniques . . . . . . . . . . . 20 2.4.1 Mixup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 2.4.2 Smart Augmentation . . . . . . . . . . . . . . . . . . . . . . . . 21 2.4.3 Pseudo-Labeling . . . . . . . . . . . . . . . . . . . . . . . . . . 21 2.4.4 Pseudo-Representation Learning . . . . . . . . . . . . . . . . . . 21 2.5 Adversarial Attack Methods . . . . . . . . . . . . . . . . . . . . . . . . 22 3 Proposed Method 24 3.1 Problem Statement and Design Challenge . . . . . . . . . . . . . . . . . 25 3.2 Motivation for Using Structured Embeddings (SEs) . . . . . . . . . . . . 26 3.3 Overview of the Proposed Framework . . . . . . . . . . . . . . . . . . . 27 3.4 Construction and Selection of SEs . . . . . . . . . . . . . . . . . . . . . 30 3.4.1 Autoencoder-based Embedding . . . . . . . . . . . . . . . . . . 31 3.4.2 Principal Component Analysis (PCA) . . . . . . . . . . . . . . . 32 3.4.3 Locally Linear Embedding (LLE) . . . . . . . . . . . . . . . . . 32 3.4.4 Summary and Selection . . . . . . . . . . . . . . . . . . . . . . 33 3.5 Integration of Structured Embeddings into InfoGAN . . . . . . . . . . . 34 3.5.1 Input Design Variants . . . . . . . . . . . . . . . . . . . . . . . . 36 3.5.2 Empirical Evaluation of Input Variants . . . . . . . . . . . . . . 37 3.5.3 Final Design Decision . . . . . . . . . . . . . . . . . . . . . . . 39 3.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 4 Experiments and Results 42 4.1 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 4.1.1 Evaluation Dataset . . . . . . . . . . . . . . . . . . . . . . . . . 43 4.1.2 Model Architectures and Training Settings . . . . . . . . . . . . 45 4.1.3 Baseline Models . . . . . . . . . . . . . . . . . . . . . . . . . . 46 4.1.4 Evaluation Metrics . . . . . . . . . . . . . . . . . . . . . . . . . 46 4.1.5 Training Details . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 4.2 Analysis of Synthesized Data Diversity . . . . . . . . . . . . . . . . . . . 47 4.2.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 4.3 Performance Across Varying Data Sizes . . . . . . . . . . . . . . . . . . 50 4.3.1 Results on MNIST and FashionMNIST . . . . . . . . . . . . . . 50 4.3.2 Results on NEU Surface Defect and WM-811K . . . . . . . . . . 52 4.4 Robustness Under Adversarial Attacks . . . . . . . . . . . . . . . . . . . 57 4.5 Ablation Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 4.5.1 Integration of Semi-Supervised Learning and Augmentations . . . 61 4.5.2 Effect of Structure Embedding Dimension . . . . . . . . . . . . . 62 5 Conclusion 64 References 66 | - |
| dc.language.iso | en | - |
| dc.subject | 機器學習降維 | zh_TW |
| dc.subject | 工業應用 | zh_TW |
| dc.subject | 生成對抗網路 | zh_TW |
| dc.subject | 少量資料 | zh_TW |
| dc.subject | Generative Adversarial Networks | en |
| dc.subject | Industrial Applications | en |
| dc.subject | Dimension Reduction | en |
| dc.subject | Limited-data | en |
| dc.title | 應用於工業有限資料的結構化嵌入研究 | zh_TW |
| dc.title | Investigation of Structured Embedding for Limited Data in Industry | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 林澤;吳沛遠;李宏毅 | zh_TW |
| dc.contributor.oralexamcommittee | Che Lin;Pei-Yuan Wu;Hung-Yi Lee | en |
| dc.subject.keyword | 生成對抗網路,工業應用,少量資料,機器學習降維, | zh_TW |
| dc.subject.keyword | Generative Adversarial Networks,Industrial Applications,Dimension Reduction,Limited-data, | en |
| dc.relation.page | 69 | - |
| dc.identifier.doi | 10.6342/NTU202502045 | - |
| dc.rights.note | 同意授權(限校園內公開) | - |
| dc.date.accepted | 2025-08-11 | - |
| dc.contributor.author-college | 電機資訊學院 | - |
| dc.contributor.author-dept | 電機工程學系 | - |
| dc.date.embargo-lift | 2025-08-20 | - |
| 顯示於系所單位: | 電機工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-2.pdf 授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務) | 2.39 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
