Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 電機工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98813
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor張耀文zh_TW
dc.contributor.advisorYao-Wen Changen
dc.contributor.author余玟蓁zh_TW
dc.contributor.authorWen-Chen Yuen
dc.date.accessioned2025-08-19T16:18:09Z-
dc.date.available2025-08-20-
dc.date.copyright2025-08-19-
dc.date.issued2025-
dc.date.submitted2025-08-11-
dc.identifier.citation[1] Gurobi. [Online]. Available: https://www.gurobi.com/
[2] “Ibm unveils new roadmap to practical quantum computing era; plans to deliver 4,000+ qubit system.” [Online]. Available: https://newsroom.ibm.com/2022-05-10-IBM-Unveils-New-Roadmap-to-Practical-Quantum-Computing-Era-Plans-to-Deliver-4,000-Qubit-System
[3] “Z3.” [Online]. Available: https://github.com/Z3Prover/z3
[4] E. Bernstein and U. Vazirani, “Quantum complexity theory,” in Proceedings of ACM symposium on Theory of Computing, pp. 11–20, San Diego, California, May 1993.
[5] A. Bhattacharyya, “On a measure of divergence between two statistical populations defined by their probability distribution,” Bulletin of the Calcutta Mathematical Society, vol. 35, pp. 99–110, 1943.
[6] S. Brandhofer, I. Polian, and K. Krsulich, “Optimal qubit reuse for near-term quantum computers,” in Proceedings of IEEE International Conference on Quantum Computing and Engineering, vol. 1, pp. 859–869, Bellevue, WA, September 2023.
[7] G. Brassard, P. Høyer, and A. Tapp, “Quantum counting,” in Proceedings of International Colloquium on Automata, Languages and Programming, pp. 820–831, Berlin, Heidelberg, July 1998.
[8] L. Burgholzer and R. Wille, “Handling non-unitaries in quantum circuit equivalence checking,” in Proceedings of ACM/IEEE Design Automation Conference, pp. 529–534, San Francisco, California, July 2022.
[9] A. D. C´orcoles, M. Takita, K. Inoue, S. Lekuch, Z. K. Minev, J. M. Chow, and J. M. Gambetta, “Exploiting dynamic quantum circuits in a quantum algorithm with superconducting qubits,” Physical Review Letters, vol. 127, p. 100501, 2021.
[10] M. DeCross, E. Chertkov, M. Kohagen, and M. Foss-Feig, “Qubit-reuse compilation with mid-circuit measurement and reset,” Physical Review X, vol. 13, no. 4, p. 041057, 2023.
[11] D. Deutsch and R. Jozsa, “Rapid solution of problems by quantum computation,” Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences, vol. 439, no. 1907, pp. 553–558, 1992.
[12] L. K. Grover, “A fast quantum mechanical algorithm for database search,” in Proceedings of ACM symposium on Theory of Computing, pp. 212–219, Philadelphia, Pennsylvania, May 1996.
[13] F. Hua, Y. Jin, Y. Chen, S. Vittal, K. Krsulich, L. S. Bishop, J. Lapeyre, A. Javadi-Abhari, and E. Z. Zhang, “CaQR: A compiler-assisted approach for qubit reuse through dynamic circuit,” in Proceedings of ACM International Conference on Architectural Support for Programming Languages and Operating Systems, vol. 3, pp. 59–71, Vancouver, BC, Canada, March 2023.
[14] M. Incudini, F. Tarocco, R. Mengoni, A. Di Pierro, and A. Mandarino, “Computing graph edit distance on quantum devices,” Quantum Machine Intelligence, vol. 4, no. 2, p. 24, 2022.
[15] A. Y. Kitaev, “Quantum measurements and the Abelian stabilizer problem,” Electronic Colloquium on Computational Complexity, vol. TR96, 1996.
[16] S. Niu, A. Hashim, C. Iancu, W. A. De Jong, and E. Younis, “Effective quantum resource optimization via circuit resizing in BQSKit,” in Proceedings of ACM/IEEE Design Automation Conference, pp. 1–6, San Francisco, CA, June 2024.
[17] A. Pawar, Y. Li, Z. Mo, Y. Guo, X. Tang, Y. Zhang, and J. Yang, “Qrcc: Evaluating large quantum circuits on small quantum computers through integrated qubit reuse and circuit cutting,” in Proceedings of ACM International Conference on Architectural Support for Programming Languages and Operating Systems, pp. 236–251, Hilton La Jolla Torrey Pines, La Jolla, CA, April 2024.
[18] T. Peng, A. W. Harrow, M. Ozols, and X. Wu, “Simulating large quantum circuits on a small quantum computer,” Physical Review Letters, vol. 125, p. 150504, 2020.
[19] A. Peruzzo, J. McClean, P. Shadbolt, M.-H. Yung, X.-Q. Zhou, P. J. Love, A. Aspuru-Guzik, and J. L. O’brien, “A variational eigenvalue solver on a photonic quantum processor,” Nature Communications, vol. 5, no. 1, p. 4213, 2014.
[20] J. M. Pino, J. M. Dreiling, C. Figgatt, J. P. Gaebler, S. A. Moses, M. Allman, C. Baldwin, M. Foss-Feig, D. Hayes, K. Mayer et al., “Demonstration of the trapped-ion quantum CCD computer architecture,” Nature, vol. 592, no. 7853, pp. 209–213, 2021.
[21] J. Preskill, “Quantum computing in the nisq era and beyond,” Quantum, vol. 2, p. 79, 2018.
[22] M. M. Rahman, G. W. Dueck, and J. D. Horton, “An algorithm for quantum template matching,” ACM Journal on Emerging Technologies in Computing Systems, vol. 11, no. 3, pp. 1–20, 2014.
[23] M. Sadeghi, S. Khadirsharbiyani, and M. T. Kandemir, “Quantum circuit resizing,” arXiv preprint arXiv:2301.00720, 2022.
[24] P. W. Shor, “Algorithms for quantum computation: discrete logarithms and factoring,” in Proceedings of IEEE Symposium on Foundations of Computer Science, pp. 124–134, Santa Fe, NM, November 1994.
[25] P. W. Shor, “Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer,” SIAM Review, vol. 41, no. 2, pp. 303–332, 1999.
[26] D. R. Simon, “On the power of quantum computation,” SIAM Journal on Computing, vol. 26, no. 5, pp. 1474–1483, 1997.
[27] R. Wille, D. Große, L. Teuber, G. W. Dueck, and R. Drechsler, “RevLib: An online resource for reversible functions and reversible circuits,” in Proceedings of IEEE International Symposium on Multiple Valued Logic, pp. 220–225, Dallas, TX, May 2008.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98813-
dc.description.abstract量子位元(qubit)資源限制是當前量子電腦的一項常見瓶頸,不僅限制了執行複雜演算法的能力,也減緩了量子應用的發展。透過在量測後重設量子位元,並將其重新用於後續閘門操作,可以有效降低整體所需的量子位元數量。我們提出一套基於可滿足模理論(SMT)與整數線性規劃(ILP)的最佳化演算法,在最大化量子位元重複使用的同時,也能選擇性地限制電路深度於一個指定上限內。
本方法考慮所有可行的電路重排(circuit rearrangement)以提升最佳性,涵蓋閘門重新排序(gate reordering)與提前量測(eager measurement)等技術。為了解決大型電路的可擴展性問題,我們進一步提出一套子電路提取演算法(subcircuit-extraction-based approach),藉由放寬最佳性保證來進行求解。
實驗結果顯示,相較於現有技術,我們的演算法能顯著減少量子位元使用數與電路深度,而子電路提取演算法的架構則在保有解品質的同時,有效處理了可擴展性的挑戰。
zh_TW
dc.description.abstractQubit capacity is a common bottleneck in quantum computers, limiting the ability to run complex algorithms and slowing the advancements in quantum computing applications. Reusing qubits by resetting them after measuring and repurposing them for subsequent gate operations offers an effective strategy to reduce the overall qubit requirements. Based on Satisfiability Modulo Theories (SMT) and Integer Linear Programming (ILP), we present an optimal algorithm that maximizes qubit reuse while optionally constraining the circuit depth to a specified upper bound. Our approach considers all feasible circuit rearrangements to enhance optimality, including gate reordering and eager measurement. We further propose a subcircuit-extraction-based approach to scale for large circuits by relaxing the optimality guarantee. Experimental results show that our exact method substantially decreases both the qubit count and the circuit depth compared to the current state of the art, while the subcircuit-extraction-based approach effectively addresses scalability issues with maintained solution quality.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-08-19T16:18:09Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-08-19T16:18:09Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontentsAcknowledgments iii
Abstract (Chinese) iv
Abstract vi
Table of Contents viii
List of Tables x
List of Figures xi
Chapter 1. Introduction 1
1.1 Previous Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3 Our Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.4 Thesis Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
Chapter 2. Preliminaries 6
2.1 Dynamic Quantum Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2 Qubit Reuse . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.3 Satisfiability Modulo Theory Solving . . . . . . . . . . . . . . . . . . . . 7
2.4 Integer Linear Programming . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.5 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Chapter 3. Our Proposed Algorithm 12
3.1 Eager Measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.2 Potential Reuse Pair Identification . . . . . . . . . . . . . . . . . . . . . . 17
3.3 SMT and ILP Constraint Construction . . . . . . . . . . . . . . . . . . . 19
3.3.1 SMT Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.3.2 Circuit Depth Limitation . . . . . . . . . . . . . . . . . . . . . . . 22
3.3.3 Optimality Proof . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.3.4 ILP Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.4 Subcircuit-Extraction-Based Qubit Reuse . . . . . . . . . . . . . . . . . . 29
Chapter 4. Experimental Results 32
4.1 Effectiveness Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
4.2 Trade-off between Qubit Reuse and Circuit Depth . . . . . . . . . . . . . 39
4.3 Scalability Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
Chapter 5. Conclusions 43
Chapter 6. Future Works 44
6.1 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
6.2 Future Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
6.2.1 Multi-Objective Optimization . . . . . . . . . . . . . . . . . . . . . 46
6.2.2 Reuse-Aware Qubit Mapping on Large-Scale Quantum Hardware . 47
6.2.3 Integrating Qubit Reuse and Circuit Cutting for Scalable Quantum Computation . . . . . . . . . . . . . . . . . . . . . . 48
Bibliography 51
Publication List 55
-
dc.language.isoen-
dc.subject量子位元重複使用zh_TW
dc.subject量子計算zh_TW
dc.subject整數線性規劃zh_TW
dc.subject可滿足性模理論zh_TW
dc.subject動態量子電路zh_TW
dc.subjectSatisfiability Modulo Theoryen
dc.subjectQubit Reuseen
dc.subjectQuantum Computingen
dc.subjectDynamic Quantum Circuiten
dc.subjectInteger Linear Programmingen
dc.title考量閘門重排與提早量測之量子位元最佳重複使用演算法zh_TW
dc.titleOptimal Qubit Reuse for Quantum Computation with Gate Reordering and Eager Measurementen
dc.typeThesis-
dc.date.schoolyear113-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee黃婷婷;方劭云;江蕙如;江介宏zh_TW
dc.contributor.oralexamcommitteeTing-Ting Hwang;Shao-Yun Fang;Hui-Ru Jiang;Jie-Hong Jiangen
dc.subject.keyword量子計算,量子位元重複使用,可滿足性模理論,整數線性規劃,動態量子電路,zh_TW
dc.subject.keywordQuantum Computing,Qubit Reuse,Satisfiability Modulo Theory,Integer Linear Programming,Dynamic Quantum Circuit,en
dc.relation.page55-
dc.identifier.doi10.6342/NTU202503849-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2025-08-13-
dc.contributor.author-college電機資訊學院-
dc.contributor.author-dept電機工程學系-
dc.date.embargo-lift2025-08-20-
顯示於系所單位:電機工程學系

文件中的檔案:
檔案 大小格式 
ntu-113-2.pdf1.85 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved