請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98810完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 楊志忠 | zh_TW |
| dc.contributor.advisor | Chih-Chung Yang | en |
| dc.contributor.author | 陳廷彥 | zh_TW |
| dc.contributor.author | Ting-Yen Chen | en |
| dc.date.accessioned | 2025-08-19T16:17:31Z | - |
| dc.date.available | 2025-08-20 | - |
| dc.date.copyright | 2025-08-19 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-08-10 | - |
| dc.identifier.citation | 1. D. Chen, H. Xiao, and J. Han, “Nanopores in GaN by electrochemical anodization in hydrofluoric acid formation and mechanism,” J. Appl. Phys. 112, 064303 (2012).
2. P. H. Griffin and R. A. Oliver, “Porous nitride semiconductors reviewed,” J. Phys. D: Appl. Phys. 53, 383002 (2020). 3. M. J. Schwab, D. Chen, J. Han, and L. D. Pfefferle, “Aligned mesopore arrays in GaN by anodic etching and photoelectrochemical surface etching,” J. Phys. Chem. C 117, 16890-16895 (2013). 4. M. J. Schwab, J. Han, and L. D. Pfefferle, “Neutral anodic etching of GaN for vertical or crystallographic alignment,” Appl. Phys. Lett. 106, 241603 (2015). 5. W. J. Tseng, D. H. van Dorp, R. R. Lieten, P. M. Vereecken, and G. Borghs, Anodic etching of n-GaN epilayer into porous GaN and its photoelectrochemical properties,” J. Phys. Chem. C 118, 29492-29498 (2014). 6. R. Radzali, N. Zainal, F. K. Yam, and Z. Hassan, “Characteristics of porous GaN prepared by KOH photoelectrochemical etching,” Mater. Res. Innovations 18, S6-412-416 (2014). 7. W. J. Hsu, K. T. Chen, W. C. Huang, C. J. Wu, J. J. Dai, S. H. Chen, and C. F. Lin, “InGaN light emitting diodes with a nanopipe layer formed from the GaN epitaxial layer,” Opt. Express 24, 11601-11610 (2016). 8. Y. Li, C. Wang, Y. Zhang, P. Hu, S. Zhang, M. Du, X. Su, Q. Li, and F. Yun, “Analysis of TM/TE mode enhancement and droop reduction by a nanoporous n-AlGaN underlayer in a 290 nm UV-LED,” Photon. Res. 8, 806-811 (2020). 9. C. B. Soh, C. B. Tay, R. J. N. Tan, A. P. Vajpeyi, I. P. Seetoh, K. K. Ansah-Antwi, and S. J. Chua, “Nanopore morphology in porous GaN template and its effect on the LEDs emission,” J. Phys. D: Appl. Phys. 46, 365102 (2013). 10. S. Huang, Y. Zhang, B. Leung, G. Yuan, G. Wang, H. Jiang, Y. Fan, Q. Sun, J. Wang, K. Xu, and J. Han, “Mechanical properties of nanoporous GaN and its application for separation and transfer of GaN thin films,” ACS Appl. Mater. Interfaces 5, 11074-11079 (2013). 11. Y. Zhang, Q. Sun, B. Leung, J. Simon, M. L. Lee, and J. Han, “The fabrication of large-area, free-standing GaN by a novel nanoetching process,” Nanotechnology 22, 045603 (2011). 12. J. H. Kang, M. Ebaid, J. K. Lee, T. Jeong, and S. W. Ryu, “Fabrication of vertical light emitting diode based on thermal deformation of nanoporous GaN and removable mechanical supporter,” ACS Appl. Mater. Interfaces 6, 8683-8687 (2014). 13. H. Yang, X. Xi, Z. Yu, H. Cao, J. Li, S. Lin, Z. Ma, and L. Zhao, “Light modulation and water splitting enhancement using a composite porous GaN structure,” ACS Appl. Mater. Interfaces 10, 5492-5497 (2018). 14. K. Maeda and K. Domen, “Photocatalytic water splitting: Recent progress and future challenges,” J. Phys. Chem. Lett. 1, 2655-2661 (2010). 15. C. Zhang, S. H. Park, D. Chen, D. W. Lin, W. Xiong, H. C. Kuo, C. F. Lin, H. Cao, and J. Han, “Mesoporous GaN for photonic engineering highly reflective GaN mirrors as an example,” ACS Photon. 2, 980-986 (2015). 16. M. Zhang, Y. Liu, J. Wang, and J. Tang, “Photodeposition of palladium nanoparticles on a porous gallium nitride electrode for nonenzymatic electrochemical sensing of glucose,” Microchimica Acta 186, DOI: 10.1007/s00604-018-3172-0 (2019). 17. A. Najar, M. Gerland, and M. Jouiad, “Porosity-induced relaxation of strains in GaN layers studied by means of microindentation and optical spectroscopy,” J. Appl. Phys. 111, 093513 (2012). 18. J. H. Kang, B. Li, T. Zhao, M. Ali Johar, C. C. Lin, Y. H. Fang, W. H. Kuo, K. L. Liang, S. Hu, S. W. Ryu, and J. Han, “RGB arrays for micro-light-emitting diode applications using nanoporous GaN embedded with quantum dots,” ACS Appl. Mater. Interfaces 12, 30890-30895 (2020). 19. T. Zhu, Y. Liu, T. Ding, W. Y. Fu, J. Jarman, C. X. Ren, R. V. Kumar, and R. A. Oliver, “Wafer-scale fabrication of non-polar mesoporous GaN distributed Bragg reflectors via electrochemical porosification,” Sci Rep 7, 45344 (2017). 20. J. R. Pugh, E. G. H. Harbord, A. Sarua, P. S. Fletcher, Y. Tian, T. Wang, and M. J. Cryan, “A Tamm plasmon-porous GaN distributed Bragg reflector cavity,” J. Opt. 23, 035003 (2021). 21. D. Chen and J. Han, “High reflectance membrane-based distributed Bragg reflectors for GaN photonics,” Appl. Phys. Lett. 101, 221104 (2022). 22. P. H. Griffin, M. Frentrup, T. Zhu, M. E. Vickers, and R. A. Oliver, “Structural characterization of porous GaN distributed Bragg reflectors using x-ray diffraction,” J. Appl. Phys. 126, 213109 (2021). 23. P. Fletcher, G. Martínez de Arriba, Y. Tian, N. Poyiatzis, C. Zhu, P. Feng, J. Bai, and T. Wang, “Optical characterisation of InGaN-based microdisk arrays with nanoporous GaN/GaN DBRs,” J. Phys. D: Appl. Phys. 55, 464001 (2022). 24. S. Mishkat-Ul-Masabih, T. S. Luk, A. Rishinaramangalam, M. Monavarian, M. Nami, and D. Feezell, “Nanoporous distributed Bragg reflectors on free-standing nonpolar m-plane GaN,” Appl. Phys. Lett. 112, 041109 (2018). 25. G. Y. Shiu, K. T. Chen, F. H. Fan, K. P. Huang, W. J. Hsu, J. J. Dai, C. F. Lai, and C. F. Lin, “InGaN light-emitting diodes with an embedded nanoporous GaN distributed Bragg reflectors,” Sci Rep 6, 29138 (2016). 26. C. Zhao, X. Yang, B. Wei, J. Liu, R. Chen, C. Luan, and H. Xiao, “Enhancement in light-emission efficiency of InGaN/GaN multiple quantum well layer by a porous-GaN mirror,” Vacuum 182, 109669 (2020). 27. R. T. Elafandy, J. H. Kang, C. Mi, T. Kyoung Kim, J. S. Kwak, and J. Han, “Study and application of birefringent nanoporous GaN in the polarization control of blue vertical-cavity surface-emitting lasers,” ACS Photonics, 8, 1041-1047 (2021). 28. C. Zhang, R. ElAfandy, and J. Han, “Distributed Bragg reflectors for GaN-based vertical-cavity surface-emitting lasers,” Appl. Sci. 9, 1593 (2019). | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98810 | - |
| dc.description.abstract | 在本研究中,我們透過電化學蝕刻(electrochemical etching, 簡稱ECE)製程製備了六種具有不同週期數多孔洞層的分散式布拉格反射器(distributed Bragg reflector, 簡稱DBR)結構,其反射波段分別位於約 450 和 700 奈米,用來研究其反射與散射行為。所採用的 ECE 施加電壓為 10、11、12 和 13 伏特,目的是產生不同孔隙率,進而導致不同的反射與散射特性。研究發現,當施加較低電壓時,所形成的多孔洞層為單行孔洞結構;而在較高電壓下,則形成多行孔洞結構。在三種不同週期的 DBR 樣品中,反射率通常隨著 DBR 週期增加而提升,然而散射強度則隨著 DBR 週期的增加而下降。在反射波段分別約為 450與 700 奈米的兩組樣品中,700 奈米樣品的散射損耗較低。這種變化趨勢與較長波長情況下散射較弱的普遍理論相符。然而,散射行為也受到孔洞結構的影響。 | zh_TW |
| dc.description.abstract | In this research we prepare six porous-layer-based distributed Bragg reflector (DBR) structures of different periods with the reflection bands around 450 and 700 nm in wavelength through electrochemical etching (ECE) process to study their reflection and scattering behaviors. The ECE applied voltages at 10, 11, 12, and 13 V are chosen to achieve different porosities and hence different reflection/scattering behaviors. It is found that with a lower applied voltage, a porous layer consists of a one-line pore structure. However, at a high voltage, a porous layer is composed of a multiple-line pore structure. Among the three samples of different DBR periods, the reflectance generally increases with increasing DBR period. However, the scattering intensity decreases with increasing DBR period. Between sample series with reflection bands around 450 and 700 nm, the scattering loss in the sample series of 700 nm is lower. This variation trend is consistent with the general theory of weaker scattering at a longer wavelength. However, the scattering behavior also depends on the pore structure. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-08-19T16:17:31Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-08-19T16:17:31Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 摘要 I
Abstract II 目 次 III 圖 次 IV 表 次 VII 第一章 序論 1 1.1 氮化鎵次表面奈米孔洞結構 1 1.2 具週期性的氮化鎵奈米多孔結構作為分散式布拉格反射器 1 1.3 研究動機 1 1.4 論文結構 2 第二章 樣品結構與製作方法 3 2.1 樣品結構與命名方式 3 2.2 樣品製作 3 2.3 樣品的橫截面掃描式電子顯微影像 4 2.4 孔隙率結果 4 第三章 樣品的反射、透射與散射行為 19 3.1 研究樣品的基本光學特性 19 3.2 樣品之間的比較 20 第四章 結論 71 參考文獻 72 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 反射 | zh_TW |
| dc.subject | 多孔洞層 | zh_TW |
| dc.subject | 電化學蝕刻 | zh_TW |
| dc.subject | 散射 | zh_TW |
| dc.subject | 分散式布拉格反射器 | zh_TW |
| dc.subject | scattering | en |
| dc.subject | reflection | en |
| dc.subject | porous-layer | en |
| dc.subject | electrochemical etching | en |
| dc.subject | distributed Bragg reflector | en |
| dc.title | 不同週期數的週期性氮化鎵奈米孔洞層所形成分散式布拉格反射器的反射與散射行為 | zh_TW |
| dc.title | Reflection and Scattering Behaviors of Distributed Bragg Reflectors Formed with Periodic GaN Nano-porous Layers of Different Period Numbers | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 廖哲浩;郭仰 | zh_TW |
| dc.contributor.oralexamcommittee | Che-Hao Liao;Yang Kuo | en |
| dc.subject.keyword | 分散式布拉格反射器,電化學蝕刻,多孔洞層,反射,散射, | zh_TW |
| dc.subject.keyword | distributed Bragg reflector,electrochemical etching,porous-layer,reflection,scattering, | en |
| dc.relation.page | 74 | - |
| dc.identifier.doi | 10.6342/NTU202503466 | - |
| dc.rights.note | 未授權 | - |
| dc.date.accepted | 2025-08-13 | - |
| dc.contributor.author-college | 電機資訊學院 | - |
| dc.contributor.author-dept | 光電工程學研究所 | - |
| dc.date.embargo-lift | N/A | - |
| 顯示於系所單位: | 光電工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-2.pdf 未授權公開取用 | 2.73 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
