Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 土木工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98806
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor王泰典zh_TW
dc.contributor.advisorTai-Tien Wangen
dc.contributor.author張晟祐zh_TW
dc.contributor.authorCheng-You Changen
dc.date.accessioned2025-08-19T16:16:38Z-
dc.date.available2025-08-20-
dc.date.copyright2025-08-19-
dc.date.issued2025-
dc.date.submitted2025-08-07-
dc.identifier.citationArjnoi, P., Jeong, J.-H., Kim, C.-Y., Park, K.-H. (2009). Effect of drainage conditions on porewater pressure distributions and lining stresses in drained tunnels. Tunnelling and Underground Space Technology, 24(4), 376–389.
Bandis, S., Lumsden, A. C., Barton, N. R. (1983). Fundamentals of rock joint deformation. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 20(6), 249–268.
Barton N, Bandis S, Bakhtar K (1985) Strength, deformation and conductivity coupling of rock joints. Int J Rock Mech Min Sci Geomech Abstr 22:121–140
Chen, Y., Selvadurai, A. P. S., Liang, W. (2019). Computational modelling of groundwater inflow during a longwall coal mining advance: A case study from the Shanxi Province, China. Rock Mechanics and Rock Engineering, 52, 917–934.
El Tani, M. (2010). Helmholtz evolution of a semi–infinite aquifer drained by a circular tunnel. Tunnelling and Underground Space Technology, 25(1), 54‒62.
Farhadian, H., Katibeh, H. (2016). Empirical model for estimating groundwater flow into tunnel in discontinuous rock masses. Environmental Earth Sciences, 75, 471.
Farhadian, H., Nikvar-Hassani, A. (2019). Water flow into tunnels in discontinuous rock: A short critical review of the analytical solution of the art. Bulletin of Engineering Geology and the Environment, 78(5), 3833–3849.
Frenelus, W., Peng, H., Zhang, J. (2021). Evaluation methods for groundwater inflows into rock tunnels: A state-of-the-art review. International Journal of Hydrology, 5(4), 152–168.
Gholizadeh, H., Peely, A. B., Karney, B. W.(2020). Assessment of groundwater ingress to a partially pressurized water–conveyance tunnel using a conduit–flow process model: A case study in Iran. Hydrogeology Journal, 28, 2573‒2585.
Gong, B., Jiang, Y., Okatsu, K., Wu, X., Teduka, J., Aoki, K. (2018). The seepage control of the tunnel excavated in high-pressure water condition using multiple times grouting method. Processes, 6(9), 159.
Goodman, R. E., Moye, D. G., Van Schalkwyk, A., Javandel, I. (1965). Ground water inflows during tunnel driving. Engineering Geology, 2, 39–56.
Goodman, R. E. (1976): Methods of geological engineering in discontinuous rock. ASTM Publ., St. Paul, West.
Heuer, R. E. (1995). Estimating rock-tunnel water inflow. In Proceedings of the Rapid Excavation and Tunneling Conference, San Francisco, California, June 1995 (pp. 18–21).
Javadi, M., Sharifzadeh, M., Shahriar, K. (2016). Uncertainty analysis of groundwater inflow into underground excavations by stochastic discontinuum method: Case study of Siah Bisheh pumped storage project, Iran. Tunnelling and Underground Space Technology, 51, 424‒438.
Jiajia, S., Hu, Z., Li, W., Changan, Z., Xing, S., Zanquan, L., Jie, S. (2022). Causes of tunnel diseases in a karst stratum and remediation measures: A case study. Frontiers in Earth Science, 10, 882058.
Jiang, C., Han, H., Xie, H.(2021). Karst aquifer water inflow into tunnels: An analytical solution. Journal of Water Resource and Protection, Article ID 6672878.
Lan, X., Zhang, X., Yin, Z., Li, X., & Yang, T. (2021). Mitigation of karst tunnel water inrush during operation in seasonal variation zone: Case study in Nanshibi Tunnel. Journal of Performance of Constructed Facilities, 35(3), 04021010.
Li, D., Li, X., Li, C. C.(2009). Case studies of groundwater flow into tunnels and an innovative water–gathering system for water drainage. Tunnelling and Underground Space Technology, 24(3), 260‒268.
Li, Q., Ito, K., Wu, Z.(2009). COMSOL Multiphysics: A novel approach to ground water modeling. Groundwater, 47(4), 580–586.
Li, X., Li, D., Xu, Y.(2020). A DFN based 3D numerical approach for modeling coupled groundwater flow and solute transport in fractured rock mass. International Journal of Heat and Mass Transfer, 149, 119179.
Lianchong, L., Tianhong, Y., Zhengzhao, L.(2011). Numerical investigation of groundwater outbursts near faults in underground coal mines. International Journal of Coal Geology, 85(3), 276‒288.
Nam, S.-W., Bobet, A. (2006). Liner stresses in deep tunnels below the water table. Tunnelling and Underground Space Technology, 21(6), 626–635.
Nikakhtar, L., Zare, S. (2020). Evaluation of underground water flow into Tabriz Metro Tunnel first line by hydro–mechanical coupling analysis. International Journal of Geotechnical and Geological Engineering, 14(1), 1‒7.
Nilsen, B. (2014). Characteristics of water ingress in Norwegian subsea tunnels. Rock Mechanics and Rock Engineering, 47, 933–945.
Rasmussen, T. C., Yu, G. (2006). Determination of groundwater flownets, fluxes, velocities, and travel times using the complex variable boundary element method. Engineering Analysis with Boundary Elements, 30, 1030‒1044.
Surinaidu, L., Rao, V. V. S. G., Rao, N. S.(2014). Hydrogeological and groundwater modeling studies to estimate the groundwater inflows into the coal mines at different mine development stages using MODFLOW, Andhra Pradesh, India. Water Resources and Industry, 7–8, 49‒65.
Shin, H. S., Youn, D. J., Chae, S. E., Shin, J. H. (2009). Effective control of pore water pressures on tunnel linings using pin-hole drain method. Tunnelling and Underground Space Technology, 24(5), 555-561.
Snow, D. T. (1969). Anisotropy permeability of fractured media. Water Resoures5(6), 1273–1289
Tsuji, H., Sawada, T., Takizawa, M. (1996). Extraordinary inundation accidents in the Seikan undersea tunnel. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 33, 330A.
Wang, T.-T., Huang, T.-H. (2009). A constitutive model for the deformation of a rock mass containing sets of ubiquitous joints. International Journal of Rock Mechanics and Mining Sciences, 46(3), 521–530.
Wang, T.-T., Huang, T.-H. (2014). Anisotropic deformation of a circular tunnel excavated in a rock mass containing sets of ubiquitous joints: Theory analysis and numerical modeling. Rock Mechanics and Rock Engineering, 47(2), 643–657.
Wang, T.-T., Jeng, F.-S., Lo, W. (2011). Mitigating large water ingresses into the New Yungchuen Tunnel, Taiwan. Bulletin of Engineering Geology and the Environment, 70(2), 173–186.
Wu, Q., Wang, M., Wu, X. (2004). Investigations of groundwater bursting into coal mine seam floors from fault zones. International Journal of Rock Mechanics and Mining Sciences, 41, 557‒571.
Xu, Z., Wang, X., Li, S.(2019). Parameter optimization for the thickness and hydraulic conductivity of tunnel lining and grouting rings. KSCE Journal of Civil Engineering, 23(6), 2772‒2783.
Xu, Z., Zhao, Z., Sun, J. (2013). Determination of water flow rate into subsea deep rock cavern with horseshoe cross–section. In Wu, F., et al. (Eds.), Global View of Engineering Geology and the Environment (pp. 345–349). CRC Press.
Xu, Z. H., Bu, Z. H., Gao, B. (2021). Sensitivity analysis and prediction method for water inflow of underground oil storage caverns in fractured porous media. International Journal of Geomechanics, 21(2), 04020251.
Yoo, C. (2005). Interaction between tunneling and groundwater—Numerical investigation using three dimensional stress–pore pressure coupled analysis. Journal of Geotechnical and Geoenvironmental Engineering, 131(2), 240–250.
和中工務段段長賴欽銘、公路總局蘇花公路改善工程處、和中清水工程處中仁工務所主任陳敏璋、中興工程顧問股份有限公司(2018)。蘇花改中仁隧道高岩覆及湧水對策。營建知訊, 429。
王泰典(2003)。岩石隧道擠壓變形模式之研究(博士論文)。國立台灣大學,台北市。
楊長義(1992)。模擬規則節理岩體強度與變形性之研究(博士論文)。國立台灣大學,台北市。
黃亮儒(2022)。等值節理岩體組成模式應用於隧道三維變形分析(碩士論文)。台灣大學土木工程學研究所,台北市。。
羅國峯、曾正郎、郭鑑智、王泰典(2018)。台9線南迴公路安朔草埔段隧道異常湧水案例。地工技術, 158, 75–86。
日本土木學會(2003)。トンネルの変状メカニズム。東京:日本土木學會。(日文)
古田島信義, 鈴木雅文, 中出剛, 片山政弘, 手塚仁, 木佐貫淨治. (2016). 北薩トンネルにおけるヒ素を含有するトンネル湧水の減水対策―ダムのグラウチング技術を適用した山岳トンネルの岩盤グラウチング―. 地盤工学ジャーナル, 12(4), 469–478. (日文)
鹿児島県. (2024). 北薩トンネルの湧水対策について(その2). 鹿児島県公式ホームページ.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98806-
dc.description.abstract滲水為山岳隧道常見的現象,而地下水作為影響山岳隧道安全性及服務性的重要環境因子之一,並且其影響可從施工階段至營運階段,對於隧道的結構穩定及功能性帶來挑戰。因此從設計乃至營運階段皆不易掌握隧道襯砌外的地下水水壓與匯集至隧道的流量。儘管現代隧道仍有設置排防水系統,但營運中隧道仍存在滲水、湧水的風險,相關營運中山岳隧道湧水的案例發生雖為罕見,但也凸顯出當實際考量地下水影響隧道時仍有精進的空間。。
本研究旨在建置考量標準隧道斷面及真實隧道排防水系統建立地下水滲流與山岳隧道互制關係的三維模擬數值技術。同時,實際山岳隧道環境中,圍岩往往為節理發達之岩體,其滲透特性隨應力變化與節理變形而變動,特別在隧道開挖過程中更為明顯。故本研究首先基於等值節理岩體組成律模式建立隧道開挖模型,分析節理內寬變化,據以評估山岳隧道開挖後圍岩水力特性的變化,繼而探討隧道開挖後近場的地下水流。
本研究探討情境分為無裂隙與裂隙位態(走向/傾角)為 N0E/0˚E、N0E/22.5˚、EN0E/45˚E、N0E/67˚E及N0E/90˚E,模擬結果顯示,節理傾角影響隧道圍岩水壓與入流量的分佈特徵。當節理發生顯著開張時,將從原本裂隙內寬1mm變化至最大裂隙內寬4.5mm。隧道支撐承受水壓力在考量節理時將相比無考量節理大0.13MPa,並且當考量節理因開挖擾動後開張也較無考量大0.15MPa左右。隧道導水層之入流量在考量節理時將相比無考量節理大10倍,並且當考量節理因開挖擾動後開張也較無考量大3倍。顯示節理變形與入流量具有高度相關性。
本研究為營運中山岳隧道應對地下水影響上提供更科學的建議。期望作為未來隧道排水與防水系統設計及營運管理之參考,進而提升山岳隧道工程於全生命週期中的韌性與使用安全。
zh_TW
dc.description.abstractSeepage is a common phenomenon in mountain tunnels, with groundwater recognized as a critical environmental factor affecting both the safety and serviceability of such tunnels. Its influence spans from the construction phase to the operational phase, posing significant challenges to the structural stability and functional performance of tunnels. However, it remains difficult to accurately assess the external groundwater pressure on tunnel linings and the associated inflow throughout the tunnel’s life cycle. Although modern tunnels are equipped with drainage and waterproofing systems, the risks of seepage and water ingress persist during operation. Even though water inrushes in operating mountain tunnels don’t happen often, they show why it’s important to better understand and manage groundwater issues.".
This study aims to develop a three-dimensional numerical simulation framework that consider standard tunnel cross-sections and actual drainage and waterproofing systems to investigate the interaction between groundwater seepage and mountain tunnels. In real-world scenarios, surrounding rock masses are typically composed of jointed rock, whose hydraulic properties vary with stress and joint deformation. Especially tunnel excavation. Therefore, the tunnel excavation model based on the equivalent jointed rock mass constitutive framework is established, and uses it to analyze joint aperture variations and evaluate the hydraulic behavior of the surrounding rock post-excavation. This enables detailed exploration of near-field groundwater flow characteristics around tunnels.
The study examines four scenarios: intact rock mass (no joints), and three joint orientations with strike/dips o configuration f N0E/0˚E,N0E/90˚E,N0E/22.5˚,EN0E/45˚E,N0E/67˚E. Simulation results demonstrate that joint dip angles significantly influence the distribution of groundwater pressure and inflow around the tunnel. When joints experience opening, preferential flow paths may develop, resulting in localized concentration of groundwater pressure and inflow. These findings reveal a strong correlation between joint deformation and inflow behavior.
The outcomes of this study provide scientific insights into managing groundwater impacts in operating mountain tunnels. The proposed methodology serves as a reference for future drainage and waterproofing system designs and operational strategies.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-08-19T16:16:38Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-08-19T16:16:38Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents誌謝 I
摘要 II
ABSTRACT III
目次 IV
圖次 VI
表次 X
第1章 緒論 1
1.1研究動機與目的 1
1.2研究方法與流程 2
1.3論文架構及各章內容 3
第2章 文獻回顧 4
2.1山岳隧道湧水案例 4
2.1.1 施工中湧水事件 4
2.1.2 營運中湧水事件 6
2.2地下水對隧道結構穩定之影響14
2.3山岳隧道地下水流量評估方法17
2.3.1 地下水入流量解析解 17
2.3.2 地下水入流量數值解 19
2.4隧道近場地下水流模擬研究 21
第3章 研究方法 23
3.1三維裂隙岩體組成模式與數值模型 23
3.1.1 三維裂隙岩體組成模式 23
3.1.2 三維裂隙岩體水力學組成模式 26
3.2三維裂隙岩體水力學分析概念模式與數值模型驗證 29
3.2.1 裂隙岩體水力學分析概念模式 29
3.2.2 力學模式驗證 30
3.2.3 裂隙內寬模組驗證 39
3.3隧道數值模型建置 40
3.3.1 隧道開挖模型建置 40
3.3.2 隧道近場水流模型建置 42
3.4近場水流模型驗證 46
第4章 模擬成果與討論 48
4.1隧道開挖對裂隙岩體影響 48
4.2開挖引致水力特性變化近場水流模擬 57
4.2.1 水壓力場與流向場差異 57
4.2.2 作用於隧道支撐水壓力差異 61
4.2.3 隧道地下水入流量差異 64
第5章 結論與建議 72
5.1結論 72
5.2建議 73
附錄、口試委員問題與答覆 74
參考文獻 80
-
dc.language.isozh_TW-
dc.subject山岳隧道zh_TW
dc.subject節理岩體zh_TW
dc.subject近場水流zh_TW
dc.subjectJointed rock massesen
dc.subjectMountain tunnelen
dc.subjectNear-field ground wateren
dc.title考慮隧道開挖對裂隙岩體滲透特性影響之近場地下水流模擬zh_TW
dc.titleSimulation of groundwater flow in tunnel near-field considering effect of excavation on permeability of fractured rock massesen
dc.typeThesis-
dc.date.schoolyear113-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee陳正勳;蕭富元;邱雅筑;王士榮;李安叡zh_TW
dc.contributor.oralexamcommitteeZheng-Xun Chen;Fu-Yuen Hsiao;Ya-Chu Chiu;Shih-Jung Wang;An-Jui Lien
dc.subject.keyword山岳隧道,近場水流,節理岩體,zh_TW
dc.subject.keywordMountain tunnel,Near-field ground water,Jointed rock masses,en
dc.relation.page83-
dc.identifier.doi10.6342/NTU202503590-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2025-08-13-
dc.contributor.author-college工學院-
dc.contributor.author-dept土木工程學系-
dc.date.embargo-lift2025-08-20-
顯示於系所單位:土木工程學系

文件中的檔案:
檔案 大小格式 
ntu-113-2.pdf6.95 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved