請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98804完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 羅凱尹 | zh_TW |
| dc.contributor.advisor | Kai-Yin Lo | en |
| dc.contributor.author | 趙曼伶 | zh_TW |
| dc.contributor.author | Man-Ling Chao | en |
| dc.date.accessioned | 2025-08-19T16:16:08Z | - |
| dc.date.available | 2025-08-20 | - |
| dc.date.copyright | 2025-08-19 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-08-07 | - |
| dc.identifier.citation | Alexandrov, A., D. Colognori, and J.A. Steitz. 2011. Human eIF4AIII interacts with an eIF4G-like partner, NOM1, revealing an evolutionarily conserved function outside the exon junction complex. Genes Dev. 25 10:1078-1090.
Armistead, J., and B. Triggs-Raine. 2014. Diverse diseases from a ubiquitous process: The ribosomopathy paradox. FEBS Letters. 588:1491-1500. Bae, E., E. Bitto, C.A. Bingman, J.G. McCoy, G.E. Wesenberg, and G.N. Phillips. 2006. Crystal structure of an eIF4G‐like protein from Danio rerio. Proteins 78:1803-1806. Balakin, A.G., L. Smith, and M.J. Fournier. 1996. The RNA world of the nucleolus: two major families of small RNAs defined by different box elements with related functions. Cell. 86:823-834. Baxter-Roshek, J.L., A.N. Petrov, and J.D. Dinman. 2007. Optimization of ribosome structure and function by rRNA base modification. PLoS One. 2:e174. Beltrame, M., Y. Henry, and D. Tollervey. 1994. Mutational analysis of an essential binding site for the U3 snoRNA in the 5' external transcribed spacer of yeast pre-rRNA. Nucleic Acids Res. 22:4057-4065. Bohnsack, M.T., M. Kos, and D. Tollervey. 2008. Quantitative analysis of snoRNA association with pre-ribosomes and release of snR30 by Rok1 helicase. EMBO Rep. 9:1230-1236. Bohnsack, M.T., R. Martin, S. Granneman, M. Ruprecht, E. Schleiff, and D. Tollervey. 2009. Prp43 bound at different sites on the pre-rRNA performs distinct functions in ribosome synthesis. Mol Cell 36:583-592. Brito Querido, J., M. Sokabe, S. Kraatz, Y. Gordiyenko, J.M. Skehel, C.S. Fraser, and V. Ramakrishnan. 2020. Structure of a human 48S translational initiation complex. Science. 369:1220-1227. Buchwald, G., S. Schüssler, C. Basquin, H. Le Hir, and E. Conti. 2013. Crystal structure of the human eIF4AIII–CWC22 complex shows how a DEAD-box protein is inhibited by a MIF4G domain. PNAS. 110:E4611 - E4618. Camillo Dos Santos, L.P., B.M. de Matos, B.C. de Maman Ribeiro, N.I.T. Zanchin, and B.G. Guimarães. 2019. Crystal structure of the MIF4G domain of the Trypanosoma cruzi translation initiation factor EIF4G5. Acta Crystallogr F. 75 Pt 12:738-743. Choe, J., I. Ryu, O.H. Park, J. Park, H. Cho, J.S. Yoo, S.W. Chi, M.K. Kim, H.K. Song, and Y.K. Kim. 2014. eIF4AIII enhances translation of nuclear cap-binding complex–bound mRNAs by promoting disruption of secondary structures in 5′UTR. PNAS. 111:E4577 - E4586. Chu, S., R.H. Archer, J.M. Zengel, and L. Lindahl. 1994. The RNA of RNase MRP is required for normal processing of ribosomal RNA. PNAS. 91:659-663. Clarkson, B.K., W.V. Gilbert, and J.A. Doudna. 2010. Functional overlap between eIF4G isoforms in Saccharomyces cerevisiae. PLoS One. 5:e9114. Cordin, O., J. Banroques, N.K. Tanner, and P. Linder. 2006. The DEAD-box protein family of RNA helicases. Gene. 367:17-37. Davila Gallesio, J., P. Hackert, K.E. Bohnsack, and M.T. Bohnsack. 2020. Sgd1 is an MIF4G domain-containing cofactor of the RNA helicase Fal1 and associates with the 5’ domain of the 18S rRNA sequence. RNA Biol. 17:539 - 553. de la Cruz, J., D. Kressler, D. Tollervey, and P. Linder. 1998. Dob1p (Mtr4p) is a putative ATP-dependent RNA helicase required for the 3' end formation of 5.8S rRNA in Saccharomyces cerevisiae. Embo j. 17:1128-1140. Emery, B., J. de la Cruz, S. Rocak, O. Deloche, and P. Linder. 2004. Has1p, a member of the DEAD-box family, is required for 40S ribosomal subunit biogenesis in Saccharomyces cerevisiae. Mol Microbiol. 52:141-158. Farrar, J.E., and N. Dahl. 2011. Untangling the Phenotypic Heterogeneity of Diamond Blackfan Anemia. Semin Hematol. 48:124-135. Fatica, A., M. Oeffinger, M. Dlakić, and D. Tollervey. 2003. Nob1p is required for cleavage of the 3' end of 18S rRNA. Mol Cell Biol. 23:1798-1807. Ferraiuolo, M.A., C.-S. Lee, L.W. Ler, J.L. Hsu, M. Costa-Mattioli, M.-j. Luo, R. Reed, and N. Sonenberg. 2004. A nuclear translation-like factor eIF4AIII is recruited to the mRNA during splicing and functions in nonsense-mediated decay. PNAS. 101:4118 - 4123. Fromont-Racine, M., B. Senger, C. Saveanu, and F. Fasiolo. 2003. Ribosome assembly in eukaryotes. Gene. 313:17-42. Gallie, D.R., and K.S. Browning. 2001. eIF4G Functionally differs from eIFiso4G in promoting internal initiation, cap-independent translation, and translation of structured mRNAs*. J Biol Chem. 276:36951 - 36960. Gelperin, D., L. Horton, J. Beckman, J. Hensold, and S.K. Lemmon. 2001. Bms1p, a novel GTP-binding protein, and the related Tsr1p are required for distinct steps of 40S ribosome biogenesis in yeast. Rna. 7:1268-1283. Gingras, A.-C., Raught, Brian, and N. Sonenberg. 1999. eIF4 initiation factors: effectors of mRNA recruitment to ribosomes and regulators of translation. Annu. Rev. Biochem. 68:913-963. Giorgi, C., G.W. Yeo, M.E. Stone, D.B. Katz, C.B. Burge, G.G. Turrigiano, and M.J. Moore. 2007. The EJC factor eIF4AIII modulates synaptic strength and neuronal protein expression. Cell. 130:179-191. Gradi, A., H. Imataka, Y.V. Svitkin, E. Rom, B. Raught, S. Morino, and N. Sonenberg. 1998. A novel functional human eukaryotic translation initiation factor 4G. Mol. Cell. Biol. . 18:334 - 342. Granneman, S., M.R. Nandineni, and S.J. Baserga. 2005. The putative NTPase Fap7 mediates cytoplasmic 20S pre-rRNA processing through a direct interaction with Rps14. Mol. Cell. Biol. 25:10352-10364. Henis-Korenblit, S., G. Shani, T. Sines, L. Marash, G. Shohat, and A. Kimchi. 2002. The caspase-cleaved DAP5 protein supports internal ribosome entry site-mediated translation of death proteins. PNAS. 99:5400-5405. Henn, A., W. Cao, D.D. Hackney, and E.M. De La Cruz. 2008. The ATPase cycle mechanism of the DEAD-box rRNA helicase, DbpA. J Mol Biol. 377:193-205. Henras, A.K., J. Soudet, M. Gérus, S. Lebaron, M. Caizergues-Ferrer, A. Mougin, and Y. Henry. 2008. The post-transcriptional steps of eukaryotic ribosome biogenesis. Cell Mol Life Sci. 65:2334-2359. Henry, Y., H. Wood, J.P. Morrissey, E. Petfalski, S. Kearsey, and D. Tollervey. 1994. The 5' end of yeast 5.8S rRNA is generated by exonucleases from an upstream cleavage site. Embo j. 13:2452-2463. Hughes, J.M., and M. Ares, Jr. 1991. Depletion of U3 small nucleolar RNA inhibits cleavage in the 5' external transcribed spacer of yeast pre-ribosomal RNA and impairs formation of 18S ribosomal RNA. Embo j. 10:4231-4239. Jankowsky, E. 2011. RNA helicases at work: binding and rearranging. Trends Biochem Sci. 36:19-29. Jarmoskaite, I., and R. Russell. 2011. DEAD-box proteins as RNA helicases and chaperones. Wiley Interdiscip Rev RNA. 2:135-152. Jiao, L., Y. Liu, X.-Y. Yu, X. Pan, Y. Zhang, J. Tu, Y.-H. Song, and Y. Li. 2023. Ribosome biogenesis in disease: new players and therapeutic targets. Signal Transduct Target Ther. 8:15. Jorgensen, P., M. Tyers, and J.R. Warner. 2004. 11 forging the factory: ribosome synthesis and growth control in budding yeast. CSH Monograph Archive. 42:329-370. Kang, J., N. Brajanovski, K.T. Chan, J. Xuan, R.B. Pearson, and E. Sanij. 2021. Ribosomal proteins and human diseases: molecular mechanisms and targeted therapy. Signal Transduct Target Ther. 6:323. Kiss-László, Z., Y. Henry, J.-P. Bachellerie, M. Caizergues-Ferrer, and T. Kiss. 1996. Site-specific ribose methylation of preribosomal RNA: A novel function for small nucleolar RNAs. Cell. 85:1077-1088. Klinge, S., and J.L. Woolford. 2019. Ribosome assembly coming into focus. Nat. Rev. Mol. Cell Biol. 20:116-131. Koš, M., and D. Tollervey. 2010. Yeast pre-rRNA processing and modification occur cotranscriptionally. Mol. Cell 37:809 - 820. Kressler, D., J.d.l. Cruz, M. Rojo, and P. Linder. 1997. Fal1p is an essential DEAD-box protein involved in 40S-ribosomal-subunit biogenesis in Saccharomyces cerevisiae. Mol Cell Biol. 17:7283 - 7294. Kressler, D., E. Hurt, and J. Baβler. 2010. Driving ribosome assembly. Biochim. Biophys. Acta - Mol. Cell Res. 1803:673-683. Kressler, D., P. Linder, and J. de la Cruz. 1999. Protein trans-acting factors involved in ribosome biogenesis in Saccharomyces cerevisiae. Mol. Cell. Biol. 19:7897-7912. Lebaron, S., C. Froment, M. Fromont-Racine, J.-C. Rain, B. Monsarrat, M. Caizergues-Ferrer, and Y. Henry. 2005. The splicing ATPase Prp43p is a component of multiple preribosomal particles. Mol. Cell. Biol. 25:9269-9282. Lebaron, S., Å. Segerstolpe, Sarah L. French, T. Dudnakova, F. de lima Alves, S. Granneman, J. Rappsilber, Ann L. Beyer, L. Wieslander, and D. Tollervey. 2013. Rrp5 Binding at multiple sites coordinates pre-rRNA processing and assembly. Mol Cell. 52:707-719. Lindahl, L., R.H. Archer, and J.M. Zengel. 1992. A new rRNA processing mutant of Saccharomyces cerevisiae. Nucleic Acids Res. 20:295-301. Linder, P., and E. Jankowsky. 2011. From unwinding to clamping - the DEAD box RNA helicase family. Nat Rev Mol Cell Biol. 12:505-516. Liu, B., X.H. Liang, D. Piekna-Przybylska, Q. Liu, and M.J. Fournier. 2008. Mis-targeted methylation in rRNA can severely impair ribosome synthesis and activity. RNA Biol. 5:249-254. Liu, Y., J. Cui, A.R. Hoffman, and J.-f. Hu. 2022. Eukaryotic translation initiation factor eIF4G2 opens novel paths for protein synthesis in development, apoptosis and cell differentiation. Cell Prolif. 56:e13367. Lygerou, Z., C. Allmang, D. Tollervey, and B. Séraphin. 1996. Accurate processing of a eukaryotic precursor ribosomal RNA by ribonuclease MRP in vitro. Science. 272:268-270. Marintchev, A., K.A. Edmonds, B. Marintcheva, E. Hendrickson, M. Oberer, C. Suzuki, B. Herdy, N. Sonenberg, and G. Wagner. 2009. Topology and regulation of the human eIF4A/4G/4H helicase complex in translation initiation. Cell. 136:447-460. Mayer, C., and I. Grummt. 2006. Ribosome biogenesis and cell growth: mTOR coordinates transcription by all three classes of nuclear RNA polymerases. Oncogene. 25:6384-6391. Meier, U.T. 2022. The daunting task of modifying ribosomal RNA. RNA. 28:1555 - 1557. Mills, E.W., and R. Green. 2017. Ribosomopathies: There’s strength in numbers. Science. 358:eaan2755. Mitchell, P., E. Petfalski, and D. Tollervey. 1996. The 3' end of yeast 5.8S rRNA is generated by an exonuclease processing mechanism. Genes Dev. 10:502-513. Montpetit, B., N.D. Thomsen, K.J. Helmke, M.A. Seeliger, J.M. Berger, and K. Weis. 2011. A conserved mechanism of DEAD-box ATPase activation by nucleoporins and InsP6 in mRNA export. Nature. 472:238-242. Nanda, J.S., A.K. Saini, A.M. Muñoz, A.G. Hinnebusch, and J.R. Lorsch. 2013. Coordinated movements of eukaryotic translation initiation factors eIF1, eIF1A, and eIF5 trigger phosphate release from eIF2 in response to start codon recognition by the ribosomal preinitiation complex. J Biol Chem. 288:5316-5329. Narla, A., and B.L. Ebert. 2010. Ribosomopathies: human disorders of ribosome dysfunction. Blood. 115 16:3196-3205. Neff, C.L., and A.B. Sachs. 1999. Eukaryotic Translation Initiation Factors 4G and 4A from Saccharomyces cerevisiae Interact Physically and Functionally. Mol. Cell. Biol. 19:5557 - 5564. Oberer, M., A. Marintchev, and G. Wagner. 2005. Structural basis for the enhancement of eIF4A helicase activity by eIF4G. Genes Dev. 19 18:2212-2223. Oeffinger, M., D. Zenklusen, A. Ferguson, K.E. Wei, A. El Hage, D. Tollervey, B.T. Chait, R.H. Singer, and M.P. Rout. 2009. Rrp17p is a eukaryotic exonuclease required for 5' end processing of Pre-60S ribosomal RNA. Mol Cell. 36:768-781. Passmore, L.A., T.M. Schmeing, D. Maag, D.J. Applefield, M.G. Acker, M.A. Algire, J.R. Lorsch, and V. Ramakrishnan. 2007. The eukaryotic translation initiation factors eIF1 and eIF1A induce an open conformation of the 40S ribosome. Mol Cell. 26:41-50. Pérez-Fernández, J., P. Martín-Marcos, and M. Dosil. 2011. Elucidation of the assembly events required for the recruitment of Utp20, Imp4 and Bms1 onto nascent pre-ribosomes. Nucleic Acids Res. 39:8105-8121. Powers, T., I. Dilova, C.Y. Chen, and K.P. Wedaman. 2004. Yeast TOR signaling: a mechanism for metabolic regulation. Curr Top Microbiol Immunol. 279:39-51. Powers, T., and P. Walter. 1999. Regulation of ribosome biogenesis by the rapamycin-sensitive TOR-signaling pathway in Saccharomyces cerevisiae. Mol Biol Cell. 10 4:987-1000. Robert-Paganin, J., S. Réty, and N. Leulliot. 2015. Regulation of DEAH/RHA helicases by G-Patch proteins. Biomed Res Int. 2015:931857. Rohde, J., R.J. Bastidas, R. Puria, and M.E. Cárdenas. 2008. Nutritional control via Tor signaling in Saccharomyces cerevisiae. Curr. Opin. Microbiol. 11 2:153-160. Sardana, R., X. Liu, S. Granneman, J. Zhu, M. Gill, O. Papoulas, E.M. Marcotte, D. Tollervey, C.C. Correll, and A.W. Johnson. 2015. The DEAH-box helicase Dhr1 dissociates U3 from the pre-rRNA to promote formation of the central pseudoknot. PLoS Biol. 13:e1002083. Savelsbergh, A., M.V. Rodnina, and W. Wintermeyer. 2009. Distinct functions of elongation factor G in ribosome recycling and translocation. Rna. 15:772-780. Schimmang, T., D. Tollervey, H. Kern, R. Frank, and E.C. Hurt. 1989. A yeast nucleolar protein related to mammalian fibrillarin is associated with small nucleolar RNA and is essential for viability. Embo j. 8:4015-4024. Schmitt, M.E., and D.A. Clayton. 1993. Nuclear RNase MRP is required for correct processing of pre-5.8S rRNA in Saccharomyces cerevisiae. Mol Cell Biol. 13:7935-7941. Schütz, P., M. Bumann, A.E. Oberholzer, C. Bieniossek, H. Trachsel, M. Altmann, and U. Baumann. 2008. Crystal structure of the yeast eIF4A-eIF4G complex: an RNA-helicase controlled by protein-protein interactions. PNAS. 105:9564-9569. Shaughnessy, J.D., Jr., N.A. Jenkins, and N.G. Copeland. 1997. cDNA cloning, expression analysis, and chromosomal localization of a gene with high homology to wheat eIF-(iso)4F and mammalian eIF-4G. Genomics. 39:192-197. Shibuya, T., T. Tange, M.E. Stroupe, and M.J. Moore. 2006. Mutational analysis of human eIF4AIII identifies regions necessary for exon junction complex formation and nonsense-mediated mRNA decay. Rna. 12:360-374. Shibuya, T., T.Ø. Tange, N. Sonenberg, and M.J. Moore. 2004. eIF4AIII binds spliced mRNA in the exon junction complex and is essential for nonsense-mediated decay. Nat. Struct. Mol. Biol. 11:346-351. Shuai, K., and J.R. Warner. 1991. A temperature sensitive mutant of Saccharomyces cerevisiae defective in pre-rRNA processing. Nucleic Acids Res. 19:5059-5064. Sloan, K.E., A.S. Warda, S. Sharma, K.-D. Entian, D.L.J. Lafontaine, and M.T. Bohnsack. 2016. Tuning the ribosome: The influence of rRNA modification on eukaryotic ribosome biogenesis and function. RNA Biol. 14:1138 - 1152. Studer, M.K., L. Ivanović, M.E. Weber, S. Marti, and S. Jonas. 2020. Structural basis for DEAH-helicase activation by G-patch proteins. PNAS. 117:7159 - 7170. Suzuki, C., R.G. Garces, K.A. Edmonds, S. Hiller, S.G. Hyberts, A. Marintchev, and G. Wagner. 2008. PDCD4 inhibits translation initiation by binding to eIF4A using both its MA3 domains. PNAS. 105:3274-3279. Takahara, T., and T. Maeda. 2012. Transient sequestration of TORC1 into stress granules during heat stress. Mol Cell. 47:242-252. Tarun, S.Z., S.E. Wells, J.A. Deardorff, and A.B. Sachs. 1997. Translation initiation factor eIF4G mediates in vitro poly(A) tail-dependent translation. PNAS. 94 17:9046-9051. Trapman, J., J. Retèl, and R.J. Planta. 1975. Ribosomal precursor particles from yeast. Exp Cell Res. 90:95-104. Tseng, Y.T., Y.C. Sung, C.Y. Liu, and K.Y. Lo. 2022. Translation initiation factor eIF4G1 modulates assembly of the polypeptide exit tunnel region in yeast ribosome biogenesis. J Cell Sci. 135. Udem, S.A., and J.R. Warner. 1972. Ribosomal RNA synthesis in Saccharomyces cerevisiae. J Mol Biol. 65:227-242. Venema, J., and D. Tollervey. 1995. Processing of pre‐ribosomal RNA in Saccharomyces cerevisiae. Yeast. 11:191-209. Virgili, G., F. Frank, K. Feoktistova, M. Sawicki, N. Sonenberg, C.S. Fraser, and B. Nagar. 2013. Structural analysis of the DAP5 MIF4G domain and its interaction with eIF4A. Structure. 21 4:517-527. Walbott, H., S. Mouffok, R. Capeyrou, S. Lebaron, O. Humbert, H. van Tilbeurgh, Y. Henry, and N. Leulliot. 2010. Prp43p contains a processive helicase structural architecture with a specific regulatory domain. Embo j. 29:2194-2204. Warner, J.R. 1999. The economics of ribosome biosynthesis in yeast. Trends Biochem Sci. 24:437-440. Watkins, N.J., and M.T. Bohnsack. 2012. The box C/D and H/ACA snoRNPs: key players in the modification, processing and the dynamic folding of ribosomal RNA. Wiley Interdiscip Rev RNA. 3:397-414. Weirich, C.S., J.P. Erzberger, J.S. Flick, J.M. Berger, J. Thorner, and K. Weis. 2006. Activation of the DExD/H-box protein Dbp5 by the nuclear-pore protein Gle1 and its coactivator InsP6 is required for mRNA export. Nat Cell Biol. 8:668-676. Weisman, R. 2016. Target of Rapamycin (TOR) Regulates Growth in Response to Nutritional Signals. Microbiol. spectr. . 4:10.1128. Woolford, J.L., Jr., and S.J. Baserga. 2013. Ribosome biogenesis in the yeast Saccharomyces cerevisiae. Genetics. 195:643-681. Wurth, L. 2012. Versatility of RNA-Binding Proteins in Cancer. Comp Funct Genomics. 2012:178525. Ye, J., X. She, Z. Liu, Z. He, X. Gao, L. Lu, R. Liang, and Y. Lin. 2021. Eukaryotic Initiation Factor 4A-3: A Review of Its Physiological Role and Involvement in Oncogenesis. Front. Oncol. 11:712045. 吳繐君。2023。探討eIF4G1與RNA解旋酶Fal1在90S核糖體中生合成之關聯性。碩士論文。 劉晴昱。2021。啤酒酵母轉譯起始因子eIF4G缺失影響90S核糖體生合成。碩士論文。 | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98804 | - |
| dc.description.abstract | 核糖體具有轉譯與蛋白質合成的關鍵功能,此複合體的生合成需依賴一系列有序的pre-rRNA裁切與大小次單元組裝。因此這個動態過程需眾多輔助因子協同參與,尤其DEAD-box RNA解旋酶能夠解開RNA二級結構,促進核糖核蛋白重塑,是核糖體生合成中不可或缺的角色。本研究探討ATP依賴性RNA解旋酶Fal1與兩個含MIF4G結構的調控因子Sgd1及eIF4G1,探討其於90S前驅核糖體組裝過程中的功能調控機制。我們發現抑制FAL1與SGD1表現,會導致細胞生長遲緩、pre-rRNA裁切異常及40S小次單元生成受阻。進一步透過Fal1 A67V (ATP 結合缺陷) 與D173N (解旋缺陷)突變,證實Fal1的ATPase與helicase活性,均為其功能必須。前人研究顯示Fal1、Sgd1與eIF4G1在體外可以形成穩定三聚體,三者亦具遺傳交互作用,缺失皆會影響pre-rRNA裁切與轉譯效率,且雙突變條件下更為嚴重。功能分析顯示,Sgd1能促進Fal1與RNA結合的能力,而eIF4G1則主要協助Fal1釋放RNA,促進完成解旋循環並從90S上離開。綜合研究結果,我們提出Fal1、Sgd1與eIF4G1可形成一個時序性的調控複合體,協助Fal1於90S核糖體中完成功能性循環,以維持40S小次單元生成與整體轉譯活性。 | zh_TW |
| dc.description.abstract | The ribosome has a key function in translation and protein synthesis in the cell. Its biogenesis relies on a series of orderly pre-rRNA cleavages and the assembly of both small and large subunits. This dynamic process requires the coordinated action of numerous accessory factors, among which DEAD-box RNA helicases play an essential role by unwinding RNA secondary structures and promoting the remodeling of ribonucleoproteins. In this study, we investigate the regulatory mechanism of the ATP-dependent RNA helicase Fal1 and two regulatory factors containing MIF4G domains, Sgd1 and eIF4G1, during the assembly of the 90S pre-ribosome. We found that repression of FAL1 or SGD1 expression led to growth retardation, abnormal pre-rRNA processing, and impaired formation of the 40S small subunit. Furthermore, mutations in Fal1, A67V (ATP-binding deficient) and D173N (helicase-deficient), also resulted in similar defects, confirming that both ATPase and helicase activities of Fal1 are essential for its function. Previous studies have shown that Fal1, Sgd1, and eIF4G1 can form a stable trimeric complex in vitro. These three proteins also exhibit genetic interactions, and their depletion affects pre-rRNA cleavage and translation efficiency. Moreover, the defects are more severe under double-mutant conditions. Functional analyses revealed that Sgd1 enhances Fal1’s RNA binding ability, whereas eIF4G1 primarily facilitates the release of RNA from Fal1, thereby promoting completion of the helicase cycle and release from the 90S pre-ribosome. Taken together, our results suggest that Fal1, Sgd1, and eIF4G1 form a temporally regulated complex that assists Fal1 in completing its functional cycle on the 90S ribosome, ensuring proper formation of the 40S small subunit downstream and maintenance of overall translational activity. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-08-19T16:16:08Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-08-19T16:16:08Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 致謝 i
摘要 ii Abstract iii 目次 iv 圖次 vii 表次 viii 第壹章、前言 1 一、核糖體 (Ribosome) 1 1. 核糖體的組成 1 2. 核糖體在轉譯作用中的角色 1 二、核糖體生合成 (Ribosome biosynthesis) 3 1. 核糖體生合成過程 3 2. 核糖體生合成的調控機制 6 3. 核糖體病變 (Ribosomopathies) 10 三、本研究相關的核糖體生合成因子 11 1. eIF4G (eukaryotic translation initiation factor 4G) 11 2. Fal1 12 3. Sgd1 14 4. eIF4G1、Sgd1與Fal1的關係 14 第貳章、研究動機 16 第參章、材料與方法 17 一、菌株與質體 17 二、生長測試 (Growth test) 17 三、轉型作用 (Transformation) 17 1. 快速酵母菌轉型 (Quick yeast transformation) 17 2. 高效酵母菌轉型 (High-efficiency yeast transformation) 17 3. 大腸桿菌轉型作用 (E. coli transformation) 18 四、螢光顯微鏡 (Fluorescence microscopy) 18 五、氫氧化鈉破菌法 (Post-alkaline extraction from yeast) 18 六、西方墨點法 (Western blotting) 19 七、北方墨點法 (Northern blotting) 19 1. 樣品製備及RNA電泳 19 2. RNA轉印 20 3. 探針置備及顯影 20 八、蛋白質免疫沉澱法 (Immunoprecipitation, IP) 20 九、多核糖體圖譜分析 (Polysome profile analysis) 21 十、蛋白質純化 22 1. 蛋白質大量表現 22 2. 蛋白質純化 22 3. 蛋白質交互作用測試 (protein-protein interaction) 23 十一、RNA assay 23 1. RNA結合活性實驗 (RNA Binding Assay) 23 2. RNA解旋活性實驗 (RNA Unwinding Assay) 23 十二、ATP 水解活性測試 (ATPase Assay) 24 第肆章、實驗結果 26 一、Fal1與Sgd1缺失阻礙90S前驅核糖體pre-rRNA的裁切 26 二、Fal1與Sgd1缺失會阻礙下游40S核糖體的生合成 27 三、Fal1功能突變破壞其ATP水解活性並影響90S組裝 28 四、Fal1與輔助因子Sgd1及eIF4G1組成功能關聯的複合物 30 五、Fal1、Sgd1及eIF4G1具基因遺傳交互作用 32 六、eIF4G1與Fal1及Sgd1雙突變體會影響90S前驅核糖體pre-rRNA裁切 33 七、tif4631∆會造成Fal1及Sgd1滯留在90S前驅核糖體上 34 八、Fal1、Sgd1及eIF4G1缺失阻礙晚期pre-40S核糖體成熟 34 九、eIF4G1抑制Fal1的RNA結合能力 35 十、不同MIF4G結構域對Fal1 ATPase具不同的調控模式 36 第伍章、討論 38 一、Fal1、Sgd1缺失影響pre-rRNA 的A0、A1及A2位點裁切 38 二、Sgd1與eIF4G共同調控Fal1與RNA結合及ATPase活性 39 三、Fal1、Sgd1與eIF4G1缺失導致90S前驅核糖體組裝異常 41 四、三者缺失造成pre-40S生成受阻,並改變Tsr1在細胞中的分布 42 第陸章、結論 44 參考文獻 45 附錄 83 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 核糖體生合成 | zh_TW |
| dc.subject | 90S核糖體 | zh_TW |
| dc.subject | 調控因子 | zh_TW |
| dc.subject | MIF4G結構 | zh_TW |
| dc.subject | RNA解旋酶Fal1 | zh_TW |
| dc.subject | RNA helicase Fal1 | en |
| dc.subject | MIF4G domain | en |
| dc.subject | regulatory factors | en |
| dc.subject | ribosome biogenesis | en |
| dc.subject | 90S pre-ribosome | en |
| dc.title | 探討RNA解旋酶Fal1在90S前驅核糖體生合成中的功能及調控 | zh_TW |
| dc.title | Study the function and regulation of the RNA helicase Fal1 in 90S pre-ribosome biogenesis | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 陳美瑜;何孟樵;溫進德;蕭貴陽 | zh_TW |
| dc.contributor.oralexamcommittee | Mei-Yu Chen ;Meng-Chiao Ho;Jin-Der Wen;Kuei-Yang Hsiao | en |
| dc.subject.keyword | 90S核糖體,核糖體生合成,RNA解旋酶Fal1,MIF4G結構,調控因子, | zh_TW |
| dc.subject.keyword | 90S pre-ribosome,ribosome biogenesis,RNA helicase Fal1,MIF4G domain,regulatory factors, | en |
| dc.relation.page | 86 | - |
| dc.identifier.doi | 10.6342/NTU202504044 | - |
| dc.rights.note | 同意授權(全球公開) | - |
| dc.date.accepted | 2025-08-12 | - |
| dc.contributor.author-college | 生物資源暨農學院 | - |
| dc.contributor.author-dept | 農業化學系 | - |
| dc.date.embargo-lift | 2030-08-05 | - |
| 顯示於系所單位: | 農業化學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-2.pdf 此日期後於網路公開 2030-08-05 | 4.6 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
