請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98796完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 盧信嘉 | zh_TW |
| dc.contributor.advisor | Hsin-Chia Lu | en |
| dc.contributor.author | 林睿澤 | zh_TW |
| dc.contributor.author | Ruei-Ze Lin | en |
| dc.date.accessioned | 2025-08-19T16:14:19Z | - |
| dc.date.available | 2025-08-20 | - |
| dc.date.copyright | 2025-08-19 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-08-11 | - |
| dc.identifier.citation | Chen-Nee Chuah, Joseph M. Kahn and Davie Tse, "Capacity of multi-antenna array systems in indoor wireless environment," IEEE GLOBECOM, Sydney, NSW, Australia, Nov. 1998, vol. 4, pp. 1894-1899.
David J. Frank, Robert H. Dennard, Edward Nowak, Paul Michael Solomon, Yuan Taur and Hon-Sum Philip Wong, "Device scaling limits of Si MOSFETs and their application dependencies," in Proceedings of the IEEE, vol. 89, no. 3, pp. 259-288, March 2001. Ho-Jin Song and Tadao Nagatsuma, "Present and future of terahertz communications," IEEE Trans. Terahertz Sci. Technol., vol. 1, no. 1, pp. 256-263, Sept. 2011. Theoodore S. Rappaport, Yunchou Xing, Ojas Kanhere, Shihao Ju, Arjuna Madanayake and Soumyajit Mandal, "Wireless communications and applications above 100 GHz: Opportunities and challenges for 6G and beyond," IEEE Access, vol. 7, pp. 78729–78757, June 2019. RO3000® Series Laminates – Rogers Corporation. [Online]. Available:https://www.rogerscorp.com/advanced-electronics-solutions/ro3000-series-laminates Mitsubishi Gas Chemical Company, Inc., "High-Frequency BT Substrates," MGC Official Website. [Online]. Available:https://www.mgc.co.jp/eng/products/sc/btprint/lineup/hfbt.html ASE, "Antenna-in-Package, " ASE Official Website. [Online]. Available:https://ase.aseglobal.com/antenna-in-package/ P. J. Gibson, "The Vivaldi aerial," in 9th European Microwave Conference, Brighton, UK, Sept. 1979, pp. 101-105. Ehud Gazit, "Improved design of the Vivaldi antenna," IEE Proc. H Microw. Antennas Propag., vol. 135, no. 2, pp. 83-90, April 1988. Umair Rafique, Stefano Pisa, Renato Cicchetti, Orlandino Testa and Marta Cavagnaro, "Ultra-wideband antennas for biomedical imaging applications: A survey," Sensors, vol. 22, no. 9, art. 3230, April 2022. Yu Liang, Seung-Hyun Lee and Wonseok Lee, "Multilayered Vivaldi antennas for improved gain and bandwidth." IEEE Trans. Antennas and Propag., vol. 55, no. 5, pp. 1514–1521, May 2007. Sergey A. Pogodin, Aleksandr B. Klyukov and Alexey V. Vinogradov, "Improvement of Vivaldi antenna directivity and gain using corrugated structures." Radioengineering, vol. 17, no. 1, pp. 83-90, March 2008. CST tutorial, "Designing Vivaldi antenna with various sizes using CST Software," WCE 2011, July 2011, pp. 1479-1483. James C. Rautio and Brian J. Rautio, "High accuracy broadband measurement of anisotropic dielectric constant using a shielded planar dual mode resonator," in 74th ARFTG Microwave Measurement Conference, Broomfield, CO, USA, 2009, pp. 1-5. James R. Baker-Jarvis, Michael D. Janezic, Billy F. Riddle, Christopher L. Holloway, Nicholas Paulter and J Blendell, "Dielectric and conductor-loss characterization and measurements on Electronic Packaging Materials," National Institute of Standards and Technology (NIST), Technical Note 1520, pp. 34, July 2001. Longzhu Cai, "UGCPW strycture-based embedded resonator with high quality factor for microwave substrate characterization," MDPI Electronics, vol. 10, no. 2, pp. 113, Jan. 2021. Lionel Duvillaret, Frederic Garet and Jean-Louis Coutaz, "A reliable method for extraction of material parameters in terahertz time-domain spectroscopy," in IEEE Journal of Selected Topics in Quantum Electronics, vol. 2, no. 3, pp. 739-746, Sept. 1996. Yin-Han Cheng, Chih-Han Lin and Yu-Hsiang Cheng, "Permittivity measurement of PCB materials using terahertz time-domain spectroscopy," 2023 Asia-Pacific Microwave Conference (APMC), Taipei, Taiwan, Dec. 2023, pp. 635-637. 鄭尹涵,「太赫茲波段材料量測與超穎表面設計」,碩士論文,國立臺灣大學電信工程學研究所,2024年7月。 David M. Pozar, Microwave Engineering, 4th edition, John Wiley & Sons, 2011. C. Seguinot, P. Kennis, Jean-Francois Legier, Fabrice Huret, E. Paleczny and Leonard Hayden, "Multimode TRL. A new concept in microwave measurements: theory and experimental verification," in IEEE Trans. Microw. Theory Techn., vol. 46, no. 5, pp. 536-542, May 1998. 宋明諭,「Ka-頻段天線系統封裝基板材料特性萃取及貼片天線設計」,碩士論文,國立臺灣大學電信工程學研究所,2022年7月。 Cadence, Transmission-Line Calculator. [Online].Available:https://www.cadence.com/zh_TW/home/tools/system-analysis/rf-microwave-design/awr-tx-line.html MathWorks, Smooth function. [Online]Available: https://www.mathworks.com/help/curvefit/smooth.html Yohei Morishita, Ken Takahashi, Ryosuke Hasaba, Tomohiro Murata, Koji Takinami and Hidenori Kitamura, "Comparison between microstrip-line and substrate integrated waveguide on package substrate in 170 GHz and 300 GHz bands," 2022 Asia-Pacific Microwave Conference (APMC), Yokohama, Japan, Nov. 2022, pp. 196-198. Xingchen Li, Xiaofan Jia, Serhat Erdogan, Matthew Jordan and Madhavan Swaminathan, "Design and characterization of metalized trench based waveguide technology on glass interposer for 6G applications," 2023 IEEE/MTT-S IMS, San Diego, CA, USA, June 2023, pp. 684-687. Jing Gao, Akifomi Kasamatsu, Fumihide Kojima and Keren Li, "Performance of transmission line on liquid crystal polymer (LCP) from 220 GHz to 330 GHz," 2015 8th UK, Europe, China Millimeter Waves and THz Technology Workshop (UCMMT), Cardiff, UK, Sept. 2015, pp. 1-4 Aleksandr Krivovitca, Umer Shah, Oleksandr Glubokov and Joachim Oberhammer, "Micromachined silicon-core substrate-integrated waveguides at 220–330 GHz," IEEE Trans. Microw. Theory Techn., vol. 68, no. 12, pp. 5123–5131, Dec. 2020. Te-Yen Chiu and Chun-Hsing Li, "Low-loss low-cost substrate-integrated waveguide and filter in GaAs IPD technology for terahertz applications," in IEEE Access, vol. 9, pp. 86346-86357, June 2021. James C. Rautio, "An experimental investigation of the microstrip step discontinuity," in IEEE Trans. Microw. Theory Techn., vol. 37, no. 11, pp. 1816-1818, Nov. 1989. Zhao-Hong Tu, Pin-Feng Chen, Sung-Lin Ho, Min-Wei Li, Tsung-Wen Chiu, and Yu-Hsiang Cheng, "Probe-based antenna measurements at sub-THz frequencies," 2023 Asia-Pacific Microwave Conference (APMC), Taipei, Taiwan, Dec. 2023, pp. 826-828. 陳昭睿,「應用於 6G 通訊 D-頻段於玻璃基板之水平極化一維端射韋瓦第陣列天線封裝」,碩士論文,國立臺灣大學電信工程學研究所,2024年7月。 Serhat Erdogan, Kyoung-Sik Jack Moon, Mohanalingam Kathaperumal, and Madhavan Swaminathan, "D-band integrated and miniaturized quasi-Yagi antenna array in glass interposer," in IEEE Trans. Terahertz Sci. Technol., vol. 13, no. 3, pp. 270-279, May 2023. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98796 | - |
| dc.description.abstract | 本論文的研究內容分成二部分,第一部分在次太赫茲頻段設計傳輸線,板材使用欣興電子的BT載板製程和TSRI的玻璃IPD製程。在BT載板設計了低損耗的微帶線和接地共平面波導,GCPW的β低於微帶傳輸線,可能是由於GCPW間隔處的電場較大,這也有助於降低GCPW的損耗。玻璃IPD製程則設計了GCPW與兩種開槽型GCPW,透過調整開槽寬度,開槽後在140GHz的損耗減少了約37%,在300GHz的損耗減少了約34%。較寬的開槽有較低的損耗。
第二部分利用玻璃IPD製程設計水平極化一維端射Vivaldi天線,對單元天線和1×4陣列天線進行模擬與量測,1x4陣列天線波束掃描範圍達到-34⁰~34⁰。單元天線藉由下針量測在140GHz時的S_11為-8dB,頻寬為110-125GHz和155-165GHz共35GHz。在140GHz時1x4陣列天線的S_11為-20dB,頻寬從110GHz至170GHz,實現了60GHz的全頻段匹配。通過暗室量測,單元天線在140GHz的最大增益出現在φ=109⁰,約6.2dB。θ=100⁰時的HPBW為60⁰。在140GHz時1x4陣列天線最大增益也出現在φ=109⁰,約8.3dB。θ=105⁰時的HPBW為25⁰。 | zh_TW |
| dc.description.abstract | This thesis is divided into two main parts. The first part designs transmission lines in the sub-terahertz frequency band, using Unimicron electronics' BT substrate process and TSRI's glass IPD process. Low-loss microstrip lines and grounded coplanar waveguides (GCPW) are designed on the BT substrate, and the β of GCPW is lower than that of microstrip transmission lines, likely due to the larger electric field in the gap of the GCPW, which helps to reduce its loss. In the glass IPD process, a grounded coplanar waveguide and two types of slotted grounded coplanar waveguides are designed. With slot at ground plane, the loss is reduced by approximately 37% at 140GHz and 34% at 300GHz. Wider slot gives lower loss.
The second part uses the glass IPD process to design a horizontal polarized one-dimensional end-fire Vivaldi antenna. Both the element antenna and the 1x4 antenna array are simulated and measured. The 1x4 antenna array has a beam steering range from -34°~34°. The single antenna measured with a probe at 140GHz has an S_11 of -8dB, with a 10dB bandwidth of 110-125GHz and 155-165GHz, a total of 35GHz. The 1x4 antenna array at 140GHz has an S_11 of -20dB, with a bandwidth of 110-170GHz, a total of 60GHz full-band matching. The 2D radiation pattern measured in the anechoic chamber shows the maximum gain of the single antenna at 140GHz is 6.2dB at φ=109°. The half-power beamwidth at θ=100° is 60°. The 1x4 antenna array at 140GHz has a maximum gain of 8.3dB at φ=109°, with a half-power beamwidth of 25° at θ=105°. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-08-19T16:14:19Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-08-19T16:14:19Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 口試委員會審定書 #
誌謝 i 摘要 ii Abstract iii 目次 iv 圖次 vi 表次 xi Chapter 1 簡介 1 1.1 研究動機 1 1.2 高頻電路板材 2 1.3 AiP (Antenna-in-Package)天線封裝 4 1.4 Vivaldi天線介紹 5 1.5 本論文貢獻 9 1.6 各章節簡介 9 Chapter 2 介電係數及傳輸線傳播常數萃取 11 2.1 介電係數萃取方法 11 2.1.1 共振法 11 2.1.2 傳輸線法 12 2.1.3 太赫茲時域頻譜法 13 2.2 長短傳輸線長度差萃取傳播常數 14 2.2.1 TRL介紹 14 2.2.2 長短傳輸線法 16 Chapter 3 載板傳輸線模擬與量測 18 3.1 傳輸線設計 18 3.1.1 微帶線設計 18 3.1.2 GCPW設計 24 3.2 萃取方法及結果 30 3.2.1 微帶線量測結果 31 3.2.2 GCPW量測結果 35 3.2.3 比較與討論 38 Chapter 4 玻璃IPD GCPW模擬與量測 41 4.1 GCPW傳輸線設計 41 4.2 量測結果 53 4.3 開槽接地面高階模態 60 4.4 比較與討論 65 Chapter 5 玻璃IPD Vivaldi天線設計模擬與量測結果 68 5.1 Vivaldi天線模擬結果 68 5.1.1 單元天線 68 5.1.2 Feeding network 76 5.1.3 1x4陣列天線 79 5.2 Vivaldi天線量測結果 100 5.2.1 量測設置 100 5.2.2 單元天線量測結果 101 5.2.3 1x4陣列天線量測結果 107 5.3 比較與討論 111 Chapter 6 結論與未來展望 113 參考文獻 114 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | D-頻段 | zh_TW |
| dc.subject | BT載板 | zh_TW |
| dc.subject | 玻璃基板 | zh_TW |
| dc.subject | 傳輸線 | zh_TW |
| dc.subject | 開槽型接地共平面波導 | zh_TW |
| dc.subject | 韋瓦第天線陣列 | zh_TW |
| dc.subject | glass IPD | en |
| dc.subject | D-band | en |
| dc.subject | Vivaldi antenna array | en |
| dc.subject | slotted ground coplanar waveguide | en |
| dc.subject | transmission line | en |
| dc.subject | BT substrate | en |
| dc.title | 使用晶片載板製程及玻璃IPD製程設計水平極化韋瓦第天線陣列之D-頻段天線系統封裝 | zh_TW |
| dc.title | Antenna-in-Package design using horizontally polarized Vivaldi antenna array at D-band on chip carrier and glass IPD | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 鄭宇翔;陳晏笙;謝松年 | zh_TW |
| dc.contributor.oralexamcommittee | Yu-Hsiang Cheng;Yen-Sheng Chen;Sung-Nien Hsieh | en |
| dc.subject.keyword | D-頻段,BT載板,玻璃基板,傳輸線,開槽型接地共平面波導,韋瓦第天線陣列, | zh_TW |
| dc.subject.keyword | D-band,BT substrate,glass IPD,transmission line,slotted ground coplanar waveguide,Vivaldi antenna array, | en |
| dc.relation.page | 117 | - |
| dc.identifier.doi | 10.6342/NTU202503992 | - |
| dc.rights.note | 同意授權(限校園內公開) | - |
| dc.date.accepted | 2025-08-13 | - |
| dc.contributor.author-college | 電機資訊學院 | - |
| dc.contributor.author-dept | 電信工程學研究所 | - |
| dc.date.embargo-lift | 2025-08-20 | - |
| 顯示於系所單位: | 電信工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-2.pdf 授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務) | 8.07 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
