Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 生物科技研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98791
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor林詩舜zh_TW
dc.contributor.advisorShih-Shun Linen
dc.contributor.author鄭璇zh_TW
dc.contributor.authorShiuan Chengen
dc.date.accessioned2025-08-19T16:13:06Z-
dc.date.available2025-08-20-
dc.date.copyright2025-08-19-
dc.date.issued2025-
dc.date.submitted2025-08-12-
dc.identifier.citationArif, M.A., Frank, W., and Khraiwesh, B. (2013). Role of RNA interference (RNAi) in the Moss Physcomitrella patens. Int J Mol Sci 14, 1516-1540.
Batth, R., Poormassalehgoo, A., Bhardwaj, K., Kaniecka, E., and Goto-Yamada, S. (2025). A Simple and Scalable Chopped-Thallus Transformation Method for Marchantia polymorpha. Plants (Basel) 14.
Blagojevic, A., Baldrich, P., Schiaffini, M., Lechner, E., Baumberger, N., Hammann, P., Elmayan, T., Garcia, D., Vaucheret, H., Meyers, B.C., and Genschik, P. (2024). Heat stress promotes Arabidopsis AGO1 phase separation and association with stress granule components. iScience 27, 109151.
Bowman, J.L., Araki, T., and Kohchi, T. (2016). Marchantia: Past, Present and Future. Plant Cell Physiol 57, 205-209.
Bowman, J.L., Kohchi, T., Yamato, K.T., Jenkins, J., Shu, S., Ishizaki, K., Yamaoka, S., Nishihama, R., Nakamura, Y., Berger, F., Adam, C., Aki, S.S., Althoff, F., Araki, T., Arteaga-Vazquez, M.A., Balasubrmanian, S., Barry, K., Bauer, D., Boehm, C.R., Briginshaw, L., Caballero-Perez, J., Catarino, B., Chen, F., Chiyoda, S., Chovatia, M., Davies, K.M., Delmans, M., Demura, T., Dierschke, T., Dolan, L., Dorantes-Acosta, A.E., Eklund, D.M., Florent, S.N., Flores-Sandoval, E., Fujiyama, A., Fukuzawa, H., Galik, B., Grimanelli, D., Grimwood, J., Grossniklaus, U., Hamada, T., Haseloff, J., Hetherington, A.J., Higo, A., Hirakawa, Y., Hundley, H.N., Ikeda, Y., Inoue, K., Inoue, S.I., Ishida, S., Jia, Q., Kakita, M., Kanazawa, T., Kawai, Y., Kawashima, T., Kennedy, M., Kinose, K., Kinoshita, T., Kohara, Y., Koide, E., Komatsu, K., Kopischke, S., Kubo, M., Kyozuka, J., Lagercrantz, U., Lin, S.S., Lindquist, E., Lipzen, A.M., Lu, C.W., De Luna, E., Martienssen, R.A., Minamino, N., Mizutani, M., Mizutani, M., Mochizuki, N., Monte, I., Mosher, R., Nagasaki, H., Nakagami, H., Naramoto, S., Nishitani, K., Ohtani, M., Okamoto, T., Okumura, M., Phillips, J., Pollak, B., Reinders, A., Rovekamp, M., Sano, R., Sawa, S., Schmid, M.W., Shirakawa, M., Solano, R., Spunde, A., Suetsugu, N., Sugano, S., Sugiyama, A., Sun, R., Suzuki, Y., Takenaka, M., et al. (2017). Insights into Land Plant Evolution Garnered from the Marchantia polymorpha Genome. Cell 171, 287-304 e215.
Bradamante, G., Nguyen, V.H., Incarbone, M., Meir, Z., Bente, H., Dona, M., Lettner, N., Mittelsten Scheid, O., and Gutzat, R. (2024). Two ARGONAUTE proteins loaded with transposon-derived small RNAs are associated with the reproductive cell lineage in Arabidopsis. Plant Cell 36, 863-880.
Chen, X. (2009). Small RNAs and their roles in plant development. Annu Rev Cell Dev Biol 25, 21-44.
Dalmadi, A., Miloro, F., Balint, J., Varallyay, E., and Havelda, Z. (2021). Controlled RISC loading efficiency of miR168 defined by miRNA duplex structure adjusts ARGONAUTE1 homeostasis. Nucleic Acids Res 49, 12912-12928.
Ding, Y., Huang, L., Jiang, Q., and Zhu, C. (2020). MicroRNAs as Important Regulators of Heat Stress Responses in Plants. J Agric Food Chem 68, 11320-11326.
Futagami, K., Tsuzuki, M., Yoshida, M., and Watanabe, Y. (2025). MpmiR319 promotes gemma/gemma cup formation in the liverwort Marchantia polymorpha. J Exp Bot.
Hong, S.F., Wei, W.L., Pan, Z.J., Yu, J.Z., Cheng, S., Hung, Y.L., Tjita, V., Wang, H.C., Komatsu, A., Nishihama, R., Kohchi, T., Chen, H.M., Chen, W.C., Lo, J.C., Chiu, Y.H., Yang, H.C., Lu, M.Y., Liu, L.D., and Lin, S.S. (2024). Molecular Insights into MpAGO1 and Its Regulatory miRNA, miR11707, in the High-Temperature Acclimation of Marchantia polymorpha. Plant Cell Physiol 65, 1414-1433.
Hung, Y.L., Hong, S.F., Wei, W.L., Cheng, S., Yu, J.Z., Tjita, V., Yong, Q.Y., Nishihama, R., Kohchi, T., Bowman, J.L., Chien, Y.C., Chiu, Y.H., Yang, H.C., Lu, M.J., Pan, Z.J., Wang, C.N., and Lin, S.S. (2024). Dual Regulation of Cytochrome P450 Gene Expression by Two Distinct Small RNAs, a Novel tasiRNA and miRNA, in Marchantia polymorpha. Plant Cell Physiol 65, 1115-1134.
Ishizaki, K., Chiyoda, S., Yamato, K.T., and Kohchi, T. (2008). Agrobacterium-mediated transformation of the haploid liverwort Marchantia polymorpha L., an emerging model for plant biology. Plant Cell Physiol 49, 1084-1091.
Ishizaki, K., Nishihama, R., Yamato, K.T., and Kohchi, T. (2016). Molecular Genetic Tools and Techniques for Marchantia polymorpha Research. Plant Cell Physiol 57, 262-270.
Ishizaki, K., Nishihama, R., Ueda, M., Inoue, K., Ishida, S., Nishimura, Y., Shikanai, T., and Kohchi, T. (2015). Development of Gateway Binary Vector Series with Four Different Selection Markers for the Liverwort Marchantia polymorpha. PLoS One 10, e0138876.
Jagtap, S., and Shivaprasad, P.V. (2014). Diversity, expression and mRNA targeting abilities of Argonaute-targeting miRNAs among selected vascular plants. BMC Genomics 15, 1049.
Kubota, A., Ishizaki, K., Hosaka, M., and Kohchi, T. (2013). Efficient Agrobacterium-mediated transformation of the liverwort Marchantia polymorpha using regenerating thalli. Biosci Biotechnol Biochem 77, 167-172.
Lin, J.S., Kuo, C.C., Yang, I.C., Tsai, W.A., Shen, Y.H., Lin, C.C., Liang, Y.C., Li, Y.C., Kuo, Y.W., King, Y.C., Lai, H.M., and Jeng, S.T. (2018). MicroRNA160 Modulates Plant Development and Heat Shock Protein Gene Expression to Mediate Heat Tolerance in Arabidopsis. Front Plant Sci 9, 68.
Lin, P.C., Lu, C.W., Shen, B.N., Lee, G.Z., Bowman, J.L., Arteaga-Vazquez, M.A., Liu, L.Y., Hong, S.F., Lo, C.F., Su, G.M., Kohchi, T., Ishizaki, K., Zachgo, S., Althoff, F., Takenaka, M., Yamato, K.T., and Lin, S.S. (2016). Identification of miRNAs and Their Targets in the Liverwort Marchantia polymorpha by Integrating RNA-Seq and Degradome Analyses. Plant Cell Physiol 57, 339-358.
Lin, S.S., and Bowman, J.L. (2018). MicroRNAs in Marchantia polymorpha. New Phytol 220, 409-416.
Lloyd, C.E., and Steinmetz, F.H. (1937). Temperature as a Factor Influencing the Sexual Response of Marchantia. American Journal of Botany 24, 423-425.
Qian, D., Wang, M., Niu, Y., Yang, Y., and Xiang, Y. (2025). Sexual reproduction in plants under high temperature and drought stress. Cell Rep 44, 115390.
Romani, F., Sauret-Gueto, S., Rebmann, M., Annese, D., Bonter, I., Tomaselli, M., Dierschke, T., Delmans, M., Frangedakis, E., Silvestri, L., Rever, J., Bowman, J.L., Romani, I., and Haseloff, J. (2024). The landscape of transcription factor promoter activity during vegetative development in Marchantia. Plant Cell 36, 2140-2159.
Singh, R.K., Prasad, A., Maurya, J., and Prasad, M. (2022). Regulation of small RNA-mediated high temperature stress responses in crop plants. Plant Cell Rep 41, 765-773.
Song, X., Li, Y., Cao, X., and Qi, Y. (2019). MicroRNAs and Their Regulatory Roles in Plant-Environment Interactions. Annu Rev Plant Biol 70, 489-525.
Sugano, S.S., Nishihama, R., Shirakawa, M., Takagi, J., Matsuda, Y., Ishida, S., Shimada, T., Hara-Nishimura, I., Osakabe, K., and Kohchi, T. (2018). Efficient CRISPR/Cas9-based genome editing and its application to conditional genetic analysis in Marchantia polymorpha. PLoS One 13, e0205117.
Sunkar, R., Li, Y.F., and Jagadeeswaran, G. (2012). Functions of microRNAs in plant stress responses. Trends Plant Sci 17, 196-203.
Tomizawa, Y., Minamino, N., Shimokawa, E., Kawamura, S., Komatsu, A., Hiwatashi, T., Nishihama, R., Ueda, T., Kohchi, T., and Kondo, Y. (2023). Harnessing Deep Learning to Analyze Cryptic Morphological Variability of Marchantia polymorpha. Plant Cell Physiol 64, 1343-1355.
Tsuzuki, M., Nishihama, R., Ishizaki, K., Kurihara, Y., Matsui, M., Bowman, J.L., Kohchi, T., Hamada, T., and Watanabe, Y. (2016). Profiling and Characterization of Small RNAs in the Liverwort, Marchantia polymorpha, Belonging to the First Diverged Land Plants. Plant Cell Physiol 57, 359-372.
Vaucheret, H., Mallory, A.C., and Bartel, D.P. (2006). AGO1 homeostasis entails coexpression of MIR168 and AGO1 and preferential stabilization of miR168 by AGO1. Mol Cell 22, 129-136.
Vaucheret, H., Vazquez, F., Crete, P., and Bartel, D.P. (2004). The action of ARGONAUTE1 in the miRNA pathway and its regulation by the miRNA pathway are crucial for plant development. Genes Dev 18, 1187-1197.
Vazquez, F., Gasciolli, V., Crete, P., and Vaucheret, H. (2004). The nuclear dsRNA binding protein HYL1 is required for microRNA accumulation and plant development, but not posttranscriptional transgene silencing. Curr Biol 14, 346-351.
Wang, H., Li, Y., Chern, M., Zhu, Y., Zhang, L.L., Lu, J.H., Li, X.P., Dang, W.Q., Ma, X.C., Yang, Z.R., Yao, S.Z., Zhao, Z.X., Fan, J., Huang, Y.Y., Zhang, J.W., Pu, M., Wang, J., He, M., Li, W.T., Chen, X.W., Wu, X.J., Li, S.G., Li, P., Li, Y., Ronald, P.C., and Wang, W.M. (2021). Suppression of rice miR168 improves yield, flowering time and immunity. Nat Plants 7, 129-136.
Zhan, J., and Meyers, B.C. (2023). Plant Small RNAs: Their Biogenesis, Regulatory Roles, and Functions. Annu Rev Plant Biol 74, 21-51.
Zhu, L. (2021). Targeted Gene Knockouts by Protoplast Transformation in the Moss Physcomitrella patens. Front Genome Ed 3, 719087.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98791-
dc.description.abstract植物微型 RNA (microRNAs; miRNA) 在基因表達調控中扮演關鍵角色。Argonaute (AGO) 蛋白作為核糖核酸誘導沈默複合體 (RNA-induced silencing complex; RISC) 的核心組件,負責介導目標mRNA的裂解或轉譯抑制。在早期陸生植物 Marchantia polymorpha中, miR11707.1 以及miR11707.2 是兩的特有的miRNA,源自於同一前驅物,並且都能被載入 MpAGO1 中,調控 MpAGO1 mRNA。儘管先前的研究已經為 miR11707-MpAGO1 調控模組提供了基礎見解,但對其功能和分子機制的更詳細理解仍有待深入。本研究利用 Clustered Regularly Interspaced Short Palindromic Repeat-CRISPR associated protein 9 (CRISPR-Cas9) 基因編輯技術結合葉狀體轉殖,在 Takaragaike-1 (Tak-1) 和 Takaragaike-2 (Tak-2) 兩種遺傳背景下成功建立了 mir11707ge突變株,有效降低先前配子體轉殖而產生的後代因染色體重組所引起的遺傳背景變異。降解組分析顯示,在 28°C 下, RISC 活性發生改變,並且不同遺傳背景下 mir11707ge突變株也呈現出 miRNA 目標基因的切割差異。在外表型上, mir11707ge 突變體表現出較小的葉狀體和葉狀體邊緣捲曲,其中 mir11707ge/Tak-2 在 28°C 下顯示出更高的敏感性。利用遠紅光誘導,高溫抑制了野生型和 mir11707ge 突變株的有性生殖器官發育,然而在正常溫度下 miR11707 缺失對有性生殖器官誘導沒有顯著影響。啟動子分析證實 MIR11707 在芽孢中廣泛表達,然而 MpAGO1 啟動子活性較低或無法檢測。總而言之,本項研究闡明了 miR11707-MpAGO1 調控在 M. polymorpha 中扮演著的關鍵角色,並暗示了遺傳背景可能影響 RNA 沉默,為早期陸生植物在環境壓力下 RNA 沉默途徑的演化和功能提供了新見解。zh_TW
dc.description.abstractPlant microRNAs (miRNAs) play crucial roles in regulating gene expression, with Argonaute (AGO) proteins serving as core components of the RNA-induced silencing complex (RISC), which mediates target mRNA cleavage or translational repression. In the early land plant Marchantia polymorpha, miR11707.1 and miR11707.2 are species-specific miRNAs derived from the same precursor, capable of loading into MpAGO1 for MpAGO1 mRNA cleavage. Although previous studies have provided foundational insights into the miR11707-MpAGO1 regulatory module, a more detailed understanding of its functions and molecular mechanisms remains needed. In this study, we employed Clustered Regularly Interspaced Short Palindromic Repeat-CRISPR associated protein 9 (CRISPR-Cas9) gene editing, combined with thallus transformation, to generate mir11707ge mutants in two genetic backgrounds, Takaragaike-1 (Tak-1) and Takaragaike-2 (Tak-2), thereby effectively minimizing genetic background variation caused by chromosomal recombination, which was observed in previous sporeling transformation mutant progenies. Degradome analysis revealed altered RISC activity at 28°C, characterized by the loss of miR11707-mediated negative regulation of MpAGO1, leading to differential cleavage efficiencies of various miRNA target genes. Phenotypically, mir11707ge mutants displayed smaller thallus size and thallus margin curling, with mir11707ge/Tak-2 showing heightened sensitivity at 28°C. Under far-red light, induction assays showed that at high temperature, sexual organ development was strongly suppressed in both wild-type and mir11707ge mutants, and miR11707 deficiency had no significant effect on sexual organ induction. Promoter analysis confirmed broad expression of MIR11707 in gemmae, while MpAGO1 promoter activity was low or undetectable. Collectively, this study elucidates the critical role of the miR11707-MpAGO1 regulatory module in M. polymorpha and provides evidence that genetic background may influence RNA silencing, offering new insights into the evolution and functional dynamics of RNA silencing pathways in early land plants under environmental stress.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-08-19T16:13:06Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-08-19T16:13:06Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents致謝 I
摘要 II
Abstract III
Contents V
List of Tables VIII
List of Figures IX
Introduction 1
Materials & Methods 6
Plant materials and growth conditions 6
CRISPR-Cas9 vector construction 6
Promoter assay vector construction 7
Thallus transformation 7
Genotyping 8
Small RNA library construction and sequencing 9
Degradome library construction and sequencing 10
Real-time RT–PCR 11
Microscopic observation of Citrine-NLS signal 12
Result 13
CRISPR-Cas9-mediated creation of mir11707ge mutants in Tak-1 and Tak-2 backgrounds 13
Small RNA profiling reveals specific miRNA loss and miRNA changes in mir11707ge mutants 14
Impact of temperature on RISC-mediated mRNA cleavage and miRNA target regulation in mir11707ge mutants 17
Impaction of genetic background and high temperature on thallus size and morphology in mir11707ge mutants 21
High temperature suppresses sexual organ formation in both wild-type and mir11707ge mutants despite successful induction 22°C 24
Promoter expression and profiling of MIR11707 and MpAGO1 in M. polymorpha using a citrine fluorescent reporter 25
Discussion 28
Confirming the regulatory importance of miR11707 for MpAGO1 28
Tissue expression patterns of MIR11707 and MpAGO1 30
Improving the accuracy of phenotypic analysis in M. polymorpha through thallus transformation 31
Response to high temperature varies across different genetic backgrounds 32
Effect of high temperature on sexual organs formation 34
Conclusion 35
References 36
Table 44
Figures 47
Supplementary Figure 70
-
dc.language.isoen-
dc.subject地錢zh_TW
dc.subject苔蘚植物zh_TW
dc.subject葉狀體轉殖zh_TW
dc.subjectArgonaute 1zh_TW
dc.subject微型 RNAzh_TW
dc.subjectMicroRNAen
dc.subjectArgonaute 1en
dc.subjectThallus transformationen
dc.subjectMarchantia polymorphaen
dc.subjectBryophyteen
dc.title利用 Marchantia polymorpha 葉狀體轉殖技術研究高溫影響 miR11707-MpAGO1 之調控功能zh_TW
dc.titleInvestigation of the regulatory function of miR11707-MpAGO1 under heat stress using thallus transformation of Marchantia polymorphaen
dc.typeThesis-
dc.date.schoolyear113-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee邱子珍;陳荷明;劉力瑜;荒木崇zh_TW
dc.contributor.oralexamcommitteeTzyy-Jen Chiou;Ho-Ming Chen;Li-Yu Liu;Takashi Arakien
dc.subject.keyword苔蘚植物,地錢,微型 RNA,Argonaute 1,葉狀體轉殖,zh_TW
dc.subject.keywordBryophyte,Marchantia polymorpha,MicroRNA,Argonaute 1,Thallus transformation,en
dc.relation.page71-
dc.identifier.doi10.6342/NTU202503940-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2025-08-14-
dc.contributor.author-college生物資源暨農學院-
dc.contributor.author-dept生物科技研究所-
dc.date.embargo-lift2025-08-20-
顯示於系所單位:生物科技研究所

文件中的檔案:
檔案 大小格式 
ntu-113-2.pdf9.91 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved