Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 土木工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98789
標題: 以粗粒徑分子動力學探討尾管彎矩剛性對噬菌體吸附行為之影響
Investigating the Influence of Tail Tube Bending Rigidity on Bacteriophage Adsorption Behavior Using Coarse-Grained Molecular Dynamics
作者: 林泓佑
Hong-You Lin
指導教授: 張書瑋
Shu-Wei Chang
關鍵字: 噬菌體,粗粒徑模擬,尾管柔韌性,彎矩剛性,吸附效率,細胞表面曲率,感染機制,
Phage,Coarse-grained simulation,Tail tube flexibility,Bending stiffness,Adsorption efficiency,Surface curvature,Infection mechanism,
出版年 : 2025
學位: 碩士
摘要: 本研究針對噬菌體感染初期的吸附階段,探討尾管彎矩剛性與宿主細胞表面曲率對其吸附行為與效率之影響,並嘗試補足實驗觀察於時間與空間解析度上的限制。研究以 Douge 噬菌體為藍本,建構具物理參考性的二維粗粒徑模型,並採用粗粒徑分子動力學模擬方法,設計多組模擬情境進行系統性比較分析。模擬內容包含單一噬菌體於細胞表面附近之吸附行為、柔性與剛硬尾管條件下的結構變化,以及多顆噬菌體於平坦與具曲率細胞表面中的擴散與群體吸附特性。所有模擬皆採用 NVT 系綜並引入熱擾動條件,以捕捉吸附前後的構型演化與動態特徵。
模擬結果顯示,柔韌性尾管相較於剛硬尾管可更有效率地完成吸附,不僅吸附成功率較高,且所需時間較短、所需旋轉與橫向位移較小,展現出較佳的動態適應性。此外,在柔韌性尾管的多組模擬中均可觀察到一特有吸附機制:噬菌體先以衣殼接近細胞表面,底板完成附著後再由尾管驅動整體結構站立,最終完成穩定吸附。
另一方面,細胞表面幾何形貌亦對吸附效率產生明顯影響,具曲率的表面能有效提升短距離吸附事件之完成速率,整體平均吸附時間低於平坦表面條件,顯示曲率對於完成吸附行為具有積極作用。
本研究所建構之模擬系統與分析結果,除可作為實驗觀察的輔助與延伸,亦為噬菌體結構設計、表面功能化與未來精準醫療應用提供理論依據與模擬參考基礎。
This study explores the adsorption behavior of bacteriophages during the early infection phase, focusing on the effects of tail tube bending stiffness and host cell surface curvature. A physically grounded two-dimensional coarse-grained model of the Douge phage was developed, and molecular dynamics simulations were conducted under various mechanical and geometric conditions. Simulation scenarios included single-phage adsorption, comparisons of flexible versus rigid tail tubes, and multi-phage interactions with flat and curved surfaces.
Results show that flexible tail tubes lead to higher adsorption success rates and faster attachment, requiring less rotation and displacement. A distinct multi-stage mechanism was observed: phages initially approach with the capsid, then attach via the baseplate, and finally stand upright driven by tail tube mechanics. Curved surfaces further improve adsorption efficiency by reducing completion time for short-range interactions.
The findings provide theoretical insights into phage adsorption dynamics and offer guidance for future phage design and biomedical applications.
URI: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98789
DOI: 10.6342/NTU202503620
全文授權: 同意授權(限校園內公開)
電子全文公開日期: 2030-08-07
顯示於系所單位:土木工程學系

文件中的檔案:
檔案 大小格式 
ntu-113-2.pdf
  未授權公開取用
16.87 MBAdobe PDF檢視/開啟
顯示文件完整紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved