請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98776完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 周中哲 | zh_TW |
| dc.contributor.advisor | Chung-Che Chou | en |
| dc.contributor.author | 陳緯軒 | zh_TW |
| dc.contributor.author | Wei-Hsuan Chen | en |
| dc.date.accessioned | 2025-08-19T16:09:34Z | - |
| dc.date.available | 2025-08-20 | - |
| dc.date.copyright | 2025-08-19 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-08-12 | - |
| dc.identifier.citation | 1. AISC. (2016), Seismic provisions for structural steel buildings. ANSI/AISC 341-16, American Institute of Steel Construction, Chicago, Illinois.
2. AISC. (2022a). Seismic provisions for structural steel buildings. ANSI/AISC 341-22. American Institute of Steel Construction, Chicago, Illinois. 3. AISC. (2022b). Specification for structural steel buildings. ANSI/AISC 360-22. American Institute of Steel Construction, Chicago, Illinois. 4. Su, M. Z., Shen, L., & Gu, Q. (2006). The cyclic behaviors of box-section steel beam-columns: Experiment and numerical comparison. Advanced Steel Construction, 2(2), 161-171. 5. Moghaddam, H., Sadrara, A., & Jalali, S. R. (2021, October). Seismic performance of stainless-steel built-up box columns subjected to constant axial loads and cyclic lateral deformations. In Structures (Vol. 33, pp. 4080-4095). Elsevier. 6. Wong, M. B. (2011). Plastic Analysis and Design of Steel Structures. Netherlands: Elsevier Science. 7. Chansuk, P., G. Ozkula, and C.M. Uang. (2018). Seismic behavior and design of deep, slender wide-flange structural steel beam-columns: Phase 2 testing. Rep. No. SSRP-18/02. San Diego: University of California. 8. Chou, C. C., and Wu, S. C. (2019). Cyclic lateral load test and finite element analysis of high-strength concrete-filled steel box columns under high axial compression. Engineering Structures, 189, 89–99. 9. Chou, C. C., Chen, G. W. (2020). Lateral cyclic testing and backbone curve development of high-strength steel built-up box columns under axial compression. Engineering Structures, 223, 111147 10. Chou, C. C., Xiong, H. C., Kumar, A., Lai, Y. C., Uang, C. M. (2023). Effects of section compactness and SCWB condition on moment redistribution and plastic hinging in SMF built-up box columns. J. Structural Engineering, ASCE, 149(11): 04023144 11. Chou, C. C., Shen, H. K., and Chou, D. Y. H. (2024). Subassemblage test and width-thickness design limit for steel built-up box columns subjected to axial load and cyclic lateral drift. Engineering Structures, 308, 118023. 12. Ozkula, G., Uang, C. M., and Harris, J. (2021). Development of enhanced seismic compactness requirements for webs in wide-flange steel columns. Journal of Structural Engineering, 147(7), 04021100. 13. 內政部營建署,「鋼結構極限設計法規範及解說」,2010年修正 14. 日本建築社會,「鋼構造限界状態設計指針・同解説」,2010年改定 15. 陳冠維 (2019)「高強度箱型鋼柱之抗震實驗與背骨曲線發展」,碩士論文,國立台灣大學土木工程系 16. 陳浚愿 (2021) 「箱型鋼柱於高軸壓力與層間變位下之耐震行為」,碩士論文, 國立陽明交通大學土木工程系 17. 庫馬 (2021)「邊界條件對兩層樓子構架箱型鋼柱影響之有限元素分析」,碩士論文,國立台灣大學土木工程系 18. 沉厚寬 (2022)「實尺寸一層樓架構受高軸力及地震側力下之鋼柱抗震實 驗」,碩士論文,國立台灣大學土木工程系 19. 覃文康 (2022)「實尺寸兩層樓夾型挫屈束制斜撐鋼構架在變軸力下之中等韌性構件箱型鋼柱耐震實驗」,碩士論文,國立台灣大學土木工程系 20. 林皇佐 (2023)「實尺寸三層樓鋼構架二元系統於2022池上地震下之振動台測試:中等韌性箱型鋼柱、全鋼型夾型挫屈束製支撐及滑動樓版之抗震性能」,碩士論文,國立台灣大學土木工程系 21. 戴金漢(2024)「高等韌性與中等韌性箱型鋼柱寬厚比發展及AISC 341設計建議」,碩士論文,國立臺灣大學土木工程學系 22. 簡澔瑋(2025)「BRB及SCB構架含滑動樓板雙向振動台試驗:構架設計及實驗」,碩士論文,國立臺灣大學土木工程學系 23. 謝旻諺(2025)「BRB及SCB鋼構架含滑動樓板雙向振動台試驗之模型發展與驗證」,碩士論文,國立臺灣大學土木工程學系 | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98776 | - |
| dc.description.abstract | 本研究主要延續 Tedjasukmana(2024)與 Chou and Chen(2020)之研究,探討矩形銲接箱型鋼柱在中軸力與高軸力作用下之耐震行為,並與先前針對正方形銲接箱型鋼柱之實驗結果進行比較,進一步分析翼板與腹板寬厚比變化對鋼柱耐震性能之影響。試驗結果顯示,翼板與腹板之寬厚比均對構件行為具顯著影響,且兩者間存在交互作用;在承受相同軸力條件下,較大的翼板或腹板寬厚比會導致局部挫屈提早發生,進而造成彎矩強度較快遞減與韌性下降,整體耐震行為亦隨之惡化。
Chou and Chen(2020)針對六支採用高強度鋼材(SM570MC)之銲接箱型鋼柱進行反覆側推試驗,探討不同寬厚比、軸力比與載重歷時(AISC反覆載重歷時與近斷層載重歷時)對構件耐震性能之影響,試體之翼板寬厚比範圍為 b/t =11、12、14、16 與20。試驗結果指出,AISC 341 所採用之反覆載重歷時比近斷層載重歷時嚴格許多。Tedjasukmana(2024)則延續此研究,擴大寬厚比範圍至24至36,並分別施加高軸力(0.4Pya)與低軸力(0.2Pya)進行實驗,同時整合過往針對正方形箱型鋼柱之試驗資料,透過迴歸分析提出適用於美國與台灣鋼構規範之建議寬厚比規定,試驗結果顯示現行AISC 341-22對寬厚比之限制過於保守。 然而,Tedjasukmana(2024)所建立之實驗資料庫僅涵蓋正方形銲接箱型鋼柱,為使資料庫更完整,本研究新增六組矩形鋼柱試體之實驗資料,並透過有限元素模擬以擴充資料量,最終建構包含78組鋼柱之完整資料庫,進行迴歸分析並提出修正後適用於正方形與矩形箱型鋼柱之AISC 341高等與中等韌性構件寬厚比建議規定,期能為未來美國與台灣鋼構規範之修訂提供參考依據。 | zh_TW |
| dc.description.abstract | This study builds upon the research conducted by Tedjasukmana (2024) and Chou and Chen (2020), focusing on the seismic behavior of rectangular welded box columns under moderate and high axial loads. The test results are compared with previous experiments on square welded box columns to further investigate the influence of flange and web width-to-thickness ratios on the seismic performance of steel columns. The results indicate that both flange and web b/t ratios significantly affect the structural behavior, with clear interactive effects between the two. Under the same axial load condition, a larger flange or web b/t ratio leads to earlier local buckling, resulting in faster moment strength degradation, reduced ductility, and an overall deterioration in seismic performance.
Chou and Chen (2020) conducted cyclic lateral loading tests on six welded box columns made of high-strength steel (SM570MC), examining the effects of different b/t ratios, axial load ratios, and loading histories (AISC cyclic loading protocol and near-fault loading protocol) on seismic performance. The flange b/t ratios of the specimens ranged from 11, 12, 14, 16, to 20. Their results showed that the cyclic loading protocol adopted by AISC 341 is significantly more stringent than the near-fault loading protocol.Tedjasukmana (2024) extended this study by increasing the b/t range to 24–36 and testing under high (0.4Pya) and low (0.2 Pya) axial loads. By integrating previous data on square box columns, a regression analysis was conducted to propose recommended b/t limits suitable for both U.S. and Taiwanese steel design codes. The results revealed that the current AISC 341-22 b/t limits are overly conservative. However, the database developed by Tedjasukmana (2024) only covered square welded box columns. To enhance the completeness of the database, this study adds experimental data from six new rectangular box column specimens and supplements the dataset with finite element simulations. Ultimately, a comprehensive database of 78 steel column cases is established, from which regression analysis is performed to propose revised width-to-thickness limits applicable to both square and rectangular box columns for highly and moderately ductile members per AISC 341. The proposed limits aim to serve as a reference for future revisions of steel design codes in the U.S. and Taiwan. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-08-19T16:09:34Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-08-19T16:09:34Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 口試委員會審定書 i
致謝 ii 摘要 iii ABSTRACT iv 目次 vi 圖次 x 表次 xiii 照片次 xiv 第一章 緒論 1 1.1 文獻回顧 1 1.1.1 各國寬厚比規範 1 1.1.2 銲接箱型鋼柱研究 2 1.2 研究動機與目的 5 1.3 研究方法 6 1.4 論文架構 6 第二章 單柱實驗 7 2.1 前言 7 2.2 實驗資料庫建立 7 2.3 試體介紹 8 2.4 載重歷時與實驗流程 10 2.5 實驗機台與儀器配置 10 2.5.1 多軸向試驗系統MATS 10 2.5.2 位移計 11 2.5.3 應變計 11 2.5.4 影像量測系統Motion Capture 11 2.6 材料性質 12 2.7 實驗觀察 12 2.7.1 試體I-11-24-20 12 2.7.2 試體I-11-24-40 13 2.7.3 試體I-12-41-20 14 2.7.4 試體I-12-41-40 14 2.7.5 試體I-24-42-20 15 2.7.6 試體I-24-42-40 16 2.8 試體整體行為比較 17 2.8.1 I-24-24與I-11-24比較 17 2.8.2 I-12-41與I-24-42比較 18 2.8.3 I-11-24與I-12-41比較 19 2.8.4 I-24-24與I-24-42比較 20 2.9 試體局部行為比較 22 2.9.1 正方形斷面試體局部挫屈比較 22 2.9.2 矩形斷面試體局部挫屈比較 22 2.10 試體裂縫觀察與分析 25 2.10.1 前言 25 2.10.2 裂縫觀察 26 2.10.3 製造建議 28 第三章 有限元素分析與驗證 29 3.1 前言 29 3.2 建模方法 29 3.2.1 模型介紹 29 3.2.2 材料性質擬合 29 3.2.3 接觸性質與網格尺寸 30 3.2.4 邊界條件與力量加載 31 3.2.5 ABAQUS求解器 31 3.3 初始缺陷的影響 32 3.4 模型驗證結果 32 3.5 近斷層載重之參數研究 32 3.6 箱型鋼柱資料庫建立 33 第四章 AISC 341新寬厚比規定發展 34 4.1 前言 34 4.2 迴歸分析 34 4.2.1 迴歸模型建立 34 4.2.2 分析方法 34 4.3 新寬厚比規定設計 36 4.3.1 軸力修正係數a 36 4.3.2 邊界條件修正係數b 36 4.3.3 側向載重歷時修正係數γl 37 4.3.4 新寬厚比規定建立 37 4.4 新寬厚比規定討論 40 4.4.1 新寬厚比規定與各國規範比較 40 4.4.2 新寬厚比規定與實驗結果比較 41 4.4.3 新寬厚比規定後續研究 44 4.5 高樓層柱寬厚比規定討論 45 第五章 結論與建議 47 5.1 結論 47 5.2 建議 49 參考文獻 50 附錄A各國規範 149 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 寬厚比 | zh_TW |
| dc.subject | 矩形銲接組合箱型鋼柱 | zh_TW |
| dc.subject | 反覆側推試驗 | zh_TW |
| dc.subject | 耐震設計 | zh_TW |
| dc.subject | Seismic Compactness Limit | en |
| dc.subject | Cyclic Lateral Loading Test | en |
| dc.subject | Width-to-Thickness Ratio | en |
| dc.subject | Rectangular Section Built-up Box Columns | en |
| dc.title | AISC 341韌性銲接組合箱型鋼柱新寬厚比規定研究 | zh_TW |
| dc.title | New Width-to-Thickness Limits for Steel Ductile Built-Up Box Columns in AISC 341 | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 吳東諭;鍾育霖;蕭博謙 | zh_TW |
| dc.contributor.oralexamcommittee | Tung-Yu Wu;Yu-Lin Chung;Po-Chien Hsiao | en |
| dc.subject.keyword | 矩形銲接組合箱型鋼柱,寬厚比,耐震設計,反覆側推試驗, | zh_TW |
| dc.subject.keyword | Rectangular Section Built-up Box Columns,Width-to-Thickness Ratio,Seismic Compactness Limit,Cyclic Lateral Loading Test, | en |
| dc.relation.page | 153 | - |
| dc.identifier.doi | 10.6342/NTU202503862 | - |
| dc.rights.note | 同意授權(全球公開) | - |
| dc.date.accepted | 2025-08-14 | - |
| dc.contributor.author-college | 工學院 | - |
| dc.contributor.author-dept | 土木工程學系 | - |
| dc.date.embargo-lift | 2025-08-20 | - |
| 顯示於系所單位: | 土木工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-2.pdf | 24.8 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
