Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
    • Advisor
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 生命科學院
  3. 生態學與演化生物學研究所
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98770
Full metadata record
???org.dspace.app.webui.jsptag.ItemTag.dcfield???ValueLanguage
dc.contributor.advisor胡哲明zh_TW
dc.contributor.advisorJer-Ming Huen
dc.contributor.author邱思涵zh_TW
dc.contributor.authorSsu-Han Chiuen
dc.date.accessioned2025-08-19T16:08:16Z-
dc.date.available2025-08-26-
dc.date.copyright2025-08-19-
dc.date.issued2025-
dc.date.submitted2025-08-11-
dc.identifier.citationAPG IV. (2016). An update of the angiosperm phylogeny group classification for the orders and families of flowering plants: APG IV. Botanical Journal of the Linnean Society, 181(1), 1–20.https://doi.org/10.1111/boj. 12385
Bianchini, G., & Sánchez‐Baracaldo, P. (2024). TreeViewer: Flexible, modular software to visualise and manipulate phylogenetic trees. Ecology and Evolution, 14(2).https://doi.org/10.1002/ece3.10873
Bodkin, N. L., & Utech, F. H. (2002). Melanthium. In Flora of North America Editorial Committee. (Ed.), Flora of North America north of Mexico (Vol. 26, pp. 723). Oxford University Press.
Castellanos, M. C., Wilson, P., & Thomson, J. D. (2004). ‘Anti-bee’ and ‘pro-bird’ changes during the evolution of hummingbird pollination in Penstemon flowers. Journal of Evolutionary Biology, 17(4), 876–885.https://doi.org/10.1111/j.1420-9101.2004.00729.x
Chandler, C. M., & McDougal, O. M. (2014). Medicinal history of North American Veratrum. Phytochemistry Reviews, 13(3), 671–694. https://doi.org/10.1007/s11101-013-9328-y
Chase, M. W., Soltis, D. E., Soltis, P. S., Rudall, P. J., Fay, M. F., Hahn, W. H., Sullivan S, Joseph, J., Molvray, M., Kores, P. J., Givnish, T. J., Sytsma, K. J., Pires, J. C. (2000). Higher level systematics of the monocotyledons: an assessment of current knowledge and a new classification. In K. L. Wilson & D. A. Morrison (Eds.), Monocots: Systematics and Evolution (pp. 3–16). CSIRO Publishing.
Chase, M. W., & Hills, H. H. (1991). Silica gel: An ideal material for field preservation of leaf samples for DNA studies. Taxon, 40(2), 215–220. https://doi.org/10.2307/1222975
Chiou, C.-R., Song, G.-Z.M., Chien, J.-H., Hsieh, C.-F., Wang, J.-C., Chen, M.-Y., Liu, H.-Y., Hsia, Y.-J., & Chen, T.-Y. (2010). Altitudinal distribution patterns of plant species in Taiwan are mainly determined by the northeast monsoon rather than the heat retention mechanism of Massenerhebung. Botanical Studies, 51, 89-97.
Cheng, T.-L. (2018) QGIS template for displaying species distribution by horizontal and vertical view in Taiwan. Zenodo. https://doi.org/10.5281/zenodo.1493690
Chen, G., Ma, X., Jürgens, A., Lu, J., Liu, E., Sun, W., & Cai, X. (2015). Mimicking livor mortis: A well-known but unsubstantiated color profile in Sapromyiophily. Journal of Chemical Ecology, 41(9), 808–815. https://doi.org/10.1007/s10886-015-0618-2
Chen, S., Yao, H., Han, J., Liu, C., Song, J., Shi, L., Zhu, Y., Ma, X., Gao, T., Pang, X., Luo, K., Li, Y., Li, X., Jia, X., Lin, Y., & Leon, C. (2010). Validation of the ITS2 region as a novel DNA barcode for identifying medicinal plant species. PLoS ONE, 5(1), e8613. https://doi.org/10.1371/journal.pone.0008613
Chen, X. and Takahashi, H. (2000) Veratrum. In Wu Z. Y. & P. H. Raven (Eds) Flora of China, (Vol. 24, pp 82–85) Science Press, Beijing, and Missouri Botanical Garden Press, St. Louis.
Chen, S. C., Qui, Y. X., Wang, A. L., Cameron, K. M., Fu, C. X. (2006). A phylogenetic analysis of the Smilacaceae based on morphological data. Acta Phytotaxonomica Sinica, 44, 113-125.
Clarkson, J. J., Knapp, S., Garcia, V. F., Olmstead, R. G., Leitch, A. R., & Chase, M. W. (2004). Phylogenetic relationships in Nicotiana (Solanaceae) inferred from multiple plastid DNA regions. Molecular Phylogenetics and Evolution, 33(1), 75–90. https://doi.org/10.1016/j.ympev.2004.05.002
Colasante, M., & Rudall, P. J. (2000). Veratrum album and V. nigrum (Melanthiaceae) in Italy: Micromorphology and systematics. Plant Biosystems, 134(2), 233–240. https://doi.org/10.1080/112635000123 31358524.
Cruden, R. W. (1977). Pollen-ovule ratios: A conservative indicator of breeding systems in flowering plants. Evolution 31, 32- 46.
Do, H. D., Kim, J. S., & Kim, J. H. (2013). Comparative genomics of four Liliales families inferred from the complete chloroplast genome sequence of Veratrum patulum O. Loes. (Melanthiaceae). Gene, 530(2), 229–235. https://doi.org/10.1016/j.gene.2013.07.100
Do, H. D. K., & Kim, J. H. (2017). A dynamic tandem repeat in monocotyledons inferred from a comparative analysis of chloroplast genomes in Melanthiaceae. Frontiers in Plant Science, 8, 693–705. https://doi.org/ 10.3389/fpls.2017.00693
Doyle, J. J. and Doyle, J. L. (1987) A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochemical Bulletin, 19, 11-15.
Edgar, R. C. (2004). MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Research, 32(5), 1792–1797. https://doi.org/10.1093/nar/gkh340
Editorial Committee of the Red List of Taiwan Plants (2017). The Red List of Vascular Plants of Taiwan, 2017. Endemic species research institute, forestry bureau, council of agriculture, executive Yuan and Taiwan Society of Plant Systematics.
Fay, M. F., Rudall, P. J., Sullivan, S, Stobart K. L., De Bruijn, A. Y., Reeves, G., Qamaruz-Zaman, F., Hong, W. P., Joseph, J., Hahn, W. J., Conran, J. G., Chase M. W. (2000). Phylogenetic studies of Asparagales based on four plastid DNA regions. In Wilson K. L., D. A. Morrison (eds.) Monocots: Systematics and Evolution (pp. 360–371). CSIRO Publishing.
Freudenthal, J. A., Pfaff, S., Terhoeven, N., Korte, A., Ankenbrand, M. J., & Förster, F. (2020). A systematic comparison of chloroplast genome assembly tools. Genome Biology, 21(1). https://doi.org/10.1186/s13059-020-02153-6
Govaerts, R., Lughadha, E. N., Black, N., Turner, R., & Paton, A. (2021). The World Checklist of Vascular Plants, a continuously updated resource for exploring global plant diversity. Scientific Data, 8(1). https://doi.org/10.1038/s41597-021-00997-6.
Hall, T.A. (1999) BioEdit: A user-friendly biological sequence alignment editor and analysis Program for Windows 95/98/NT. Nucleic Acids Symposium Series, 41, 95-9
Han, L. J., Liu, Y. Y., Zhang, Y. M., Yang, C. W., Qian, Z. G., & Li, G. D. (2019). The complete chloroplast genome and phylogenetic analysis of Veratrum mengtzeanum Loes. F. (Liliaceae). Mitochondrial DNA. Part B, Resources, 4(2), 4170–4171. https://doi.org/10.1080/23802359.2019.1693926
Hill, R., McGowan, J., Brabcová, V., McTaggart, S., Irish, N., Barker, T., Knitlhoffer, V., Lucchini, S., Baker, K., Catchpole, L., Watkins, C., Gharbi, K., Kaithakottil, G., Tracey, A., Wood, J. M., Tomšovský, M., Baldrian, P., Swarbreck, D., & Hall, N. (2025). Nuclear and mitochondrial genome assemblies for the endangered wood-decaying fungus Somion occarium. Genome Biology and Evolution. https://doi.org/10.1093/gbe/evaf003
Hu, Z., Zhao, Y., Zhao, C., & Liu, J. (2020). Taxonomic importance of pollen morphology in Veratrum L. (Melanthiaceae) using microscopic techniques. Microscopy Research and Technique. https://doi.org/10.1002/jemt.23479
Jansen, R. K., Kaittanis, C., Saski, C., Lee, S., Tomkins, J., Alverson, A. J., & Daniell, H. (2006). Phylogenetic analyses of Vitis (Vitaceae) based on complete chloroplast genome sequences: Effects of taxon sampling and phylogenetic methods on resolving relationships among rosids. BMC Evolutionary Biology, 6(1). https://doi.org/10.1186/1471-2148-6-32
Jin, J., Yu, W., Yang, J., Song, Y., dePamphilis, C. W., Yi, T., & Li, D. (2020). GetOrganelle: A fast and versatile toolkit for accurate de novo assembly of organelle genomes. Genome Biology, 21(1). https://doi.org/10.1186/s13059-020-02154-5
Katoh, K., & Standley, D. M. (2013). MAFFT multiple sequence alignment software version 7: Improvements in performance and usability. Molecular Biology and Evolution, 30(4), 772–780. https://doi.org/10.1093/molbev/mst010
Kearse, M., Moir, R., Wilson, A., Stones-Havas, S., Cheung, M., Sturrock, S., Buxton, S., Cooper, A., Markowitz, S., Duran, C., Thierer, T., Ashton, B., Meintjes, P., & Drummond, A. (2012). Geneious Basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics, 28(12), 1647–1649. https://doi.org/10.1093/bioinformatics/bts199
Kikuchi, R., Jae-Hong, P., Takahashi, H., & Maki, M. (2010). Disjunct distribution of chloroplast DNA haplotypes in the understory perennial Veratrum album ssp. oxysepalum (Melanthiaceae) in Japan as a result of ancient introgression. New Phytologist, 188, 879–891. https://doi.org/ 10.1111/j.1469-8137.2010.03398.x
Kim, C., Kim, S., & Kim, J. (2019). Historical biogeography of Melanthiaceae: A case of out-of-North America through the Bering Land Bridge. Frontiers in Plant Science, 10. https://doi.org/10.3389/fpls.2019.00396
Kim, J. O., Tamura, M. N., Fuse, S., & Lee, N. S. (2014). Taxonomic status and phylogeny of Veratrum section Veratrum (Melanthiaceae) in Korea and Japan based on chloroplast and nuclear sequence data. Plant Systematics and Evolution, 300, 75–89. https://doi.org/10.1007/s00606 013-0861-3
Kleijn, D., & Steinger, T. (2002). Contrasting effects of grazing and hay cutting on the spatial and genetic population structure of Veratrum album, an unpalatable, long‐lived, clonal plant species. Journal of Ecology, 90(2), 360–370. https://doi.org/10.1046/j.1365-2745.2001.00676.x
Kuraku, S., Zmasek, C. M., Nishimura, O., & Katoh, K. (2013). aLeaves facilitates on-demand exploration of metazoan gene family trees on MAFFT sequence alignment server with enhanced interactivity. Nucleic Acids Research, 41(Web Server issue), W22–W28. https://doi.org/10.1093/nar/gkt389
Larsson, A. (2014). AliView: A fast and lightweight alignment viewer and editor for large datasets. Bioinformatics, 30, 3276–3278.
Lawton, J. H., MacGarvin, M., & Heads, P. A. (1987). Effects of altitude on the abundance and species richness of insect herbivores on bracken. Journal of Animal Ecology, 56(1), 147-160. https://doi.org/10.2307/4805
Li, C.-F., Chytrý, M., Zelený, D., Chen, M.-Y., Chen, T.-Y., Chiou, C.-R., Hisa, Y.-J., Liu, H.-Y., Yang, S.-Z., Yeh, C.-L., Wang, J.-C., Yu, C.-F., Lai, Y.-J., Chao, W.-C., & Hsieh, C.-F. (2013). Classification of Taiwan forest vegetation. Applied Vegetation Science, 16, 698–719. https://doi.org/10.1111/avsc.12025
Li, X., Yang, Y., Henry, R. J., Rossetto, M., Wang, Y., & Chen, S. (2015). Plant DNA barcoding: From gene to genome. Biological Reviews, 90(1), 157–166. https://doi.org/10.1111/brv.12104
Liao, W., Song, Q., & Zhang, D. (2006). Pollen and resource limitation in Veratrum nigrum L. (Liliaceae), an andromonoecious herb. Journal of Integrative Plant Biology, 48(12), 1401–1408. https://doi.org/10.1111/j.1744-7909.2006.00383.x
Liao, W. J., Yuan, Y. M., & Zhang, D. Y. (2007). Biogeography and evolution of flower color in Veratrum (Melanthiaceae) through inference of a phylogeny based on multiple DNA markers. Plant Systematics and Evolution, 267 (3-4), 177–190. https://doi.org/10.1007/s00606-007 0528-z
Linné, C. von. & Salvius, L. (1753). Species plantarum: Exhibentes plantas rite cognitas, ad genera relatas, cum differentiis specificis, nominibus trivialibus, synonymis selectis, locis natalibus, secundum systema sexuale digestas... (Vol. 2). Impensis Laurentii Salvii. https://www.biodiversitylibrary.org/page/358580
Lohse, M., Drechsel, O., Kahlau, S., & Bock, R. (2013). OrganellarGenomeDRAW—a suite of tools for generating physical maps of plastid and mitochondrial genomes and visualizing expression data sets. Nucleic Acids Research, 41(W1), W575–W581. https://doi.org/10.1093/nar/gkt289
Loesener, O. (1926). Studien u ¨ber die Gattung Veratrum und ihre Verbreitung. Verhandlungen des botanischen Vereins der Pro vinz Brandenburg, 68, 105–166.
Loesener, O. (1927). Ubersicht uber Arten der Gattung Veratrum, Teil I. Repertorium Specierum Novarum Regni Vegetabilis, 24, 61–72
Ma, S. J. (2001). A revision of Euonymus (Celastraceae). Thaiszia, 11, 1–264.
Mayfield, M. M., Waser, N. M., & Price, M. V. (2001). Exploring the “Most effective pollinator principle” with complex flowers: Bumblebees and Ipomopsis aggregata. Annals of Botany, 88(4), 591–596. https://doi.org/10.1006/anbo.2001.1500
Mochizuki, K., & Kawakita, A. (2018). Pollination by fungus gnats and associated floral characteristics in five families of the Japanese flora. Annals of Botany 121 (4): 651–663. doi:10.1093/aob/mcx196.
Mochizuki, K., Okamoto, T., Chen, K., Wang, C., Evans, M., Kramer, A. T., & Kawakita, A. (2023). Adaptation to pollination by fungus gnats underlies the evolution of pollination syndrome in the genus Euonymus. Annals of Botany, 132(2), 319–333. https://doi.org/10.1093/aob/mcad081
Muchhala, N. (2007). Adaptive trade-off in floral morphology mediates specialization for flowers pollinated by bats and hummingbirds. The American Naturalist, 169, 494–504. https://doi.org/10.1086/512047
Nakai, T. (1937b). Japanese species of Veratrum (II). Journal of Japanese Botany, 13, 701–713.
Ollerton, J., Alarcón, R., Waser, N. M., Price, M. V., Watts, S., Cranmer, L., Hingston, A., Peter, C. I., & Rotenberry, J. (2009). A global test of the pollination syndrome hypothesis. Annals of Botany, 103(9), 1471–1480. https://doi.org/10.1093/aob/mcp031
Pauw, A. (2006). Floral syndromes accurately predict pollination by a specialized oil‐collecting bee (Rediviva peringueyi, Melittidae) in a guild of South African orchids (Coryciinae). American Journal of Botany, 93(6), 917–926. https://doi.org/10.3732/ajb.93.6.917
Plants of the World Online. (2025). Facilitated by the Royal Botanic Gardens, Kew. Published on the Internet; https://powo.science.kew.org/. Retrieved 30 July 2025."
Queller, D. C. (1984). Pollen-ovule ratios and hermaphrodite sexual allocation strategies. Evolution 38(6), 1148-1151.
Robertson, C. (1896) Flowers and Insects. XVI. Botanical Gazette, 21(5), 266–274.
Robinson, O., Dylus, D., & Dessimoz, C. (2016). Phylo.io: interactive viewing and comparison of large phylogenetic trees on the web. Molecular Biology and Evolution, 33(8), 2163–2166. https://doi.org/10.1093/molbev/msw080
Saitou, N., & Nei, M. (1987). The neighbor-joining method: A new method for reconstructing phylogenetic trees. Molecular Biology and Evolution, 4(4), 406–425. https://doi.org/10.1093/oxfordjournals.molbev.a040454
Sharma, N., Koul, P., & Koul, A. K. (1992). Reproductive biology of Plantago: Shift from cross- to self-pollination. Annals of Botany, 69(1), 7–11. https://doi.org/10.1093/oxfordjournals.aob.a088309
Short, P. S. (1981). Pollen-ovule ratios, breeding systems and distribution patterns of some Australian Gnaphaliinae (Compositae: Inuleae). Muelleria an Australian Journal of Botany, 4(4), 395–418. https://doi.org/10.5962/p.184070
Shuttleworth, A., Johnson, S. D., & Jürgens, A. (2017). Entering through the narrow gate: A morphological filter explains specialized pollination of a carrion-scented stapeliad. Flora, 232, 92–103. https://doi.org/10.1016/j.flora.2016.09.003
Steven, J. Phillips, Miroslav, Dudík, Robert, E. Schapire. [Internet] Maxent software for modeling species niches and distributions (Version 3.4.1). Available from url: http://biodiversityinformatics.amnh.org/open_source/maxent/. Accessed on 2025-4-2.
Su, H.-J. (1984a). Studies on the climate and vegetation types of the natural forests in Taiwan (I): Analysis of the variations in climatic factors. Quarterly Journal of Chinese Forestry, 17, 57–73.
Su, H.-J. (1984b). Studies on the climate and vegetation types of the natural forests in Taiwan (II): Altitudinal vegetation zones in relation to temperature gradient. Quarterly Journal of Chinese Forestry, 17, 1–14.
Sun, Y., Skinner, D. Z., Liang, G. H., & Hulbert, S. H. (1994). Phylogenetic analysis of Sorghum and related taxa using internal transcribed spacers of nuclear ribosomal DNA. Theoretical and Applied Genetics, 89(1), 26–32. https://doi.org/10.1007/bf00226978
Tamura, M. N. (1998) Melanthiaceae. In K. Kubitzki K (Ed.), The families and genera of vascular plants, Vol III., Flowering Plants: Monocotyledons (pp. 369–380). Springer.
Tillich, M, Lehwark, P., Pellizzer, T., Ulbricht-Jones, E. S., Fischer, A., Bock, R. & Greiner, S. (2017). GeSeq – versatile and accurate annotation of organelle genomes. Nucleic Acids Research 45(W1), W6-W11. https://doi.org/10.1093/nar/gkx391
Twyford, A. D., & Ness, R. W. (2017). Strategies for complete plastid genome sequencing. Molecular Ecology Resources, 17(5), 858–868. https://doi.org/10.1111/1755-0998.12626
Weiherer, D., Eckardt, K., & Bernhardt, P. (2020). The floral ecology and breeding system of Veratrum virginicum (Melanthiaceae). The Journal of the Torrey Botanical Society, 147(3), 223-233. https://doi.org/10.3159/torrey-d-20-00011.1
White, T. J. (1990). Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In M. A. Innis, D. H. Gelfand, J. J. Sninsky, & T. J. White (Eds.), PCR protocols: A guide to methods and applications (pp. 315–322). Academic Press.
Wong, T. K., Ly-Trong, N., Ren, H., Baños, H., Roger, A. J., Susko, E., Bielow, C., De Maio, N., Goldman, N., Hahn, M. W., Huttley, G., Lanfear, R., & Minh, B. Q. (2025, April 7). IQ-TREE 3: Phylogenomic Inference Software using Complex Evolutionary Models. https://ecoevorxiv.org/repository/view/8916/
Ying, S.-S. (1988). Memoirs of the College of Agriculture, National Taiwan University 28(2), 48. Pl. 5. photo 12-13.
Ying, S.-S. (2000). Veratrum. In Editorial Committee, Department of Botany, National Taiwan University (eds.), Flora of Taiwan, 2nd ed., Vol. 5, pp 70-71.
Zhang, Y., Han, L., Yang, C., Yin, Z., Tian, X., Qian, Z., & Li, G. (2021). Comparative chloroplast genome analysis of medicinally important Veratrum (Melanthiaceae) in China: Insights into genomic characterization and phylogenetic relationships. Plant Diversity, 44(1), 70–82. https://doi.org/10.1016/j.pld.2021.05.004
Zimmerman, J. H. (1958). A monograph of Veratrum (Doctoral dissertation). University of Wisconsin, Madison, WI, USA.
Zomlefer, W. B., Williams, N. H., Whitten, W. M., & Judd, W. S. (2001). Generic circumscription and relationships in the tribe Melanthieae (Liliales, Melanthiaceae), with emphasis on Zigadenus: Evidence from ITS and trnL-F sequence data. American Journal of Botany, 88(9), 1657–1669. https://doi.org/10.2307/3558411
Zomlefer, W. B., Whitten, W. M., Williams, N. H., & Judd, W. S. (2003). An overview of Veratrum s.l. (Liliales: Melanthiaceae) and an infrageneric phylogeny based on ITS sequence data. Systematic Botany, 28(2), 250–269. https://doi.org/10.1043/0363-6445-28.2.250
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98770-
dc.description.abstract藜蘆屬植物(Veratrum L.)隸屬黑葯花科 (Melanthiaceae),全球約有 25 個被接受的物種,主要分布於北溫帶地區。本屬在臺灣有兩種,臺灣藜蘆(Veratrum formosanum O.Loes.)與雪山藜蘆(V. shuehshanarum S.S.Ying),皆為臺灣特有種。花色與葉寬為主要區辨特徵。然而,由於形態特徵不明確與系統演化關係未解,兩者的分類地位仍具爭議。尤其我們觀察到花色連續變異的中間型,顯示需要更全面的分類重新評估。本研究根據分布海拔,可將藜蘆族群大致分為低海拔(800–1100 公尺)與高海拔(2200–3600 公尺)兩群,並進行野外採樣,包括以往未調查到的區域的三種形態植株。除了量測形態及檢視植物標本館標本外,並以核酸內轉錄間隔區(internal transcribed spacer, ITS)序列及葉綠體基因片段atpB-rbcL intergenic spacer,重建其親緣關係樹,更建立此兩種葉綠體全基因組與屬下近緣種比較。結果顯示,在形態測量結果顯示,三種形態上的葉形、葉長寬、基部網狀纖維、花細部構造之特徵與花粉構造高度重疊;分子親緣分析(nrITS 和 葉綠體片段 atpB–rbcL )與前人研究一致,呈現低解析度,無法有效分辨三種形態間的親緣關係。為提升解析度,研究進一步建構葉綠體全基因組。結果顯示僅在 rpoC1 intron 中存在單一核苷酸差異,顯示基因組間極低分化。因此綜合形態與譜系分析結果,本研究建議雪山藜蘆併入到臺灣藜蘆的同物異名。此外,本研究建立了生活史及部分生殖生物學。觀察發現,臺灣藜蘆主要的訪花昆蟲為雙翅目,特別是蠅類,顯示其紫色花與特殊氣味可能為傳粉適應。中間型與雪山藜蘆族群則未觀察到傳粉者。花粉產量與花粉/胚珠比(P/O)顯示,低海拔族群有較高的產粉量與 P/O 比,反映出可能對異花授粉依賴增加,以及其生殖限制。這些物候資料能透過長期追蹤作為國家公園族群保育政策及未來氣候變遷追蹤的指標之一。zh_TW
dc.description.abstractVeratrum (Melanthiaceae) are perennial plants, with around 25 accepted species predominantly distributed in the Northern Temperate regions. Two species are currently recognised in Taiwan, Veratrum formosanum O.Loes. and V. shuehshanarum S.S.Ying, distinguished by their floral color and leaf shape (two morphotypes). However, the taxonomy of Veratrum species in Taiwan has remained contentious due to unclear morphological distinction and unresolved phylogenetic relationships. In particular, a series of intermediate types can be observed across different elevations, presenting a complex pattern of variation that calls for a more integrative taxonomic reassessment. In this study, we conducted field sampling across a range of elevations, including sites that had not previously been examined, to investigate the morphological, molecular, and reproductive characteristics of the two morphotypes and their intermediates of Veratrum in Taiwan. The populations of Veratrum spp. in Taiwan can be categorized into low (800-1100 m) and high (2200-3600 m) elevation groups based on the localities. Results from morphological measurements revealed considerable overlap in leaf and floral traits between low- and high-altitude populations, for both morphotypes. Phylogenetic analyses were performed using nuclear ITS and chloroplast atpB–rbcL regions, and the results are consistent with previous studies, but showed low resolution among the two morphotypes and their intermediates. To improve phylogenetic resolution, we reconstructed complete chloroplast genomes from one individual each of V. formosanum and V. shuehshanarum collected at high elevations. The two genomes differed by only a single base substitution, located in the rpoC1 intron, indicating extremely low divergence in their plastomes. Therefore, based on the combined evidence from both morphological characteristics and phylogenetic analyses, we propose that V. shuehshanarum should be treated as a taxonomic synonym of V. formosanum. We also conducted reproductive biology comparisons and life cycle assessments for Veratrum in Taiwan. Floral visitors to V. formosanum were predominantly Diptera spp., especially flies for populations in both low- and high-altitude areas, which are likely attracted by the plant’s distinctive purple flowers and decaying odor. These floral traits suggest a sapromyiophilous pollination syndrome. No pollinators were recorded on intermediate type or V. shuehshanarum populations for the flowering individuals observed. Comparisons of pollen production and pollen-ovule (P/O) ratios showed that low-altitude populations produce more pollen and have higher P/O ratios than high-altitude populations for both morphotypes, suggesting a shift toward greater reliance on out crossing and the potential presence of reproductive constraints. These phenological data can serve as indicators for conservation strategies in national parks and for monitoring future climate change impacts.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-08-19T16:08:16Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-08-19T16:08:16Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents口試委員會審定書 i
誌謝 ii
摘要 iii
Abstract iv
Table of Contents vi
List of figures ix
List of tables xi
1. Introduction 1
1.1. Brief classification and morphology of Veratrum 2
1.2. Classification and morphology of Veratrum of Taiwan 6
1.3. Previous studies of the systematics of Veratrum sect. Fuscoveratrum 12
1.4. Distribution of Veratrum of Taiwan 17
1.5. Research rationale. 19
2. Methodology 20
2.1. Materials 20
2.1.1. Specimens review 20
2.1.2. Plant materials 21
2.2. Method 29
2.2.1. Morphology measurement 29
2.2.2. Micromorphological observation 29
2.2.2.1. Pollen morphological observation 29
2.2.2.2. Seed morphological observation 30
2.2.3. Phylogenetics 30
2.2.3.1. DNA extraction and PCR amplification 30
2.2.3.2. Sequencing and alignment 33
2.2.3.3. Phylogenetic analysis 33
2.2.4. Chloroplast complete genome analysis 34
2.2.5. Phenology 35
2.2.5.1. Floral visitor 35
2.2.5.2. Life cycle 36
2.2.5.3. Pollen-Ovule Ratio (P/O) . 36
2.2.5.4. Fruit set 39
3. Results 40
3.1. Morphology 40
3.2. Phylogenetic analyses 48
3.2.1. Analysis based on nrITS sequences 48
3.2.2. Chloroplast DNA analysis with atpB-rbcL 50
3.2.3. Complete Chloroplast genome 52
3.3. Phenology 55
3.3.1. Floral visitor 55
3.3.2. Life cycle 61
3.3.3. The pollen count, P/O ratio, and fruit set 64
4. Discussion 66
4.1. Morphology 66
4.2. Phylogenetic relationship 68
4.3. Phenology 71
5. Conclusion 74
6. Taxonomic treatment 76
7. Reference 82
8. Appendix 95
8.1. Publication of Veratrum formosanum 95
8.2. Publication of Veratrum shuehshanarum S. S. Ying 100
-
dc.language.isoen-
dc.subject藜蘆屬zh_TW
dc.subjectnrITSzh_TW
dc.subject生殖生物zh_TW
dc.subject生活史zh_TW
dc.subjectatpB-rbcLzh_TW
dc.subjectVeratrumen
dc.subjectnrITSen
dc.subjectatpB-rbcLen
dc.subjectreproductive biologyen
dc.subjectlife cycleen
dc.title臺灣藜蘆屬植物系統分類學及生殖生物學研究zh_TW
dc.titleSystematics and Reproductive Biology of Veratrum in Taiwanen
dc.typeThesis-
dc.date.schoolyear113-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee楊宗愈;曾妤馨zh_TW
dc.contributor.oralexamcommitteeTsung-Yu Aleck Yang;Yu-Hsin Tsengen
dc.subject.keyword藜蘆屬,nrITS,atpB-rbcL,生殖生物,生活史,zh_TW
dc.subject.keywordVeratrum,nrITS,atpB-rbcL,reproductive biology,life cycle,en
dc.relation.page103-
dc.identifier.doi10.6342/NTU202503832-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2025-08-14-
dc.contributor.author-college生命科學院-
dc.contributor.author-dept生態學與演化生物學研究所-
dc.date.embargo-lift2025-08-26-
Appears in Collections:生態學與演化生物學研究所

Files in This Item:
File SizeFormat 
ntu-113-2.pdf6.31 MBAdobe PDFView/Open
Show simple item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved