Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 機械工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98761
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor黃育熙zh_TW
dc.contributor.advisorYu-Hsi Huangen
dc.contributor.author曾奇鈞zh_TW
dc.contributor.authorChi-Chun Tsengen
dc.date.accessioned2025-08-19T16:06:09Z-
dc.date.available2025-08-20-
dc.date.copyright2025-08-19-
dc.date.issued2025-
dc.date.submitted2025-08-05-
dc.identifier.citation[1]S. Mitra and T. Acharya, "Gesture recognition: A survey," IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews), vol. 37, no. 3, pp. 311–324, 2007.
[2]S. Yan, Y. Xiong, and D. Lin, "Spatial temporal graph convolutional networks for skeleton-based action recognition," in Proceedings of the 32th AAAI Conference on Artificial Intelligence, New Orleans, Louisiana, USA, 2018, pp. 7444–7452.
[3]M. Quigley et al., "ROS: An open-source robot operating system," in ICRA Workshop on Open Source Software, 2009, vol. 3, no. 3.2: Kobe, pp. 5.
[4]A. Shahroudy, J. Liu, T.-T. Ng, and G. Wang, "NTU RGB+D: A large scale dataset for 3d human activity analysis, " in Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1010–1019.
[5]M. W. Kadous, "Machine recognition of Auslan signs using PowerGloves: Towards large-lexicon recognition of sign language," in Proceedings of the Workshop on the Integration of Gesture in Language and Speech, 1996, vol. 165: DE Wilmington, pp. 165–174.
[6]N. C. Camgoz, S. Hadfield, O. Koller, H. Ney, and R. Bowden, "Neural sign language translation," in Proceedings of the IEEE conference on computer vision and pattern recognition, 2018, pp. 7784–7793.
[7]Y. Du, W. Wang, and L. Wang, "Hierarchical recurrent neural network for skeleton based action recognition," in Proceedings of the IEEE conference on computer vision and pattern recognition, 2015, pp. 1110–1118.
[8]K. Cheng, Y. Zhang, C. Cao, L. Shi, J. Cheng, and H. Lu, "Decoupling GCN with DropGraph module for skeleton-based action recognition," in Proceedings of European Conference on Computer Vision, 2020, pp. 536–553.
[9]K. Z. Liu, H. Zhang, Z. Chen, Z. Wang, and W. Ouyang, "Disentangling and unifying graph convolutions for skeleton-based action recognition," in Proceedings of 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, WA, USA, pp. 143–152.
[10]L. Shi, Y. Zhang, J. Cheng, and H. Lu, "Two-stream adaptive graph convolutional networks for skeleton-based action recognition," in Proceedings of 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, CA, USA, pp. 12026–12035.
[11]C. Lugaresi, J., Nash Tang, H., C. McClanahan, E., Hays Uboweja, M., F. Zhang, C.-L. Chang, M. Yong, J. Lee et al., " MediaPipe: A framework for perceiving and processing reality," presented at the 3rd Workshop on Computer Vision for AR/VR at IEEE Computer Vision and Pattern Recognition (CVPR), Long Beach, CA, USA, 2019.
[12]E. Aksoy, A. D. Çakır, B. A. Erol, and A. Gumus, "Real time computer vision based robotic arm controller with ROS and gazebo simulation environment," in the 14th International Conference on Electrical and Electronics Engineering (ELECO), 2023: IEEE, pp. 1–5.
[13]G. Angelidis and L. Bampis, "Gesture-controlled robotic arm for small assembly lines," Machines, vol. 13, no. 3, p. 182, 2025.
[14]M. A. Khanesar and D. T. Branson, "Hand gesture interface to teach an industrial robots," in ICINCO (1), 2023, pp. 243–249.
[15]J. J. Murray, " Our Work," World Federation of the Deaf. Accessed: Nov. 1, 2024. [Online.] Available: http://wfdeaf.org/our-work/
[16]李信賢,「臺灣手語歷史」,手語人 李信賢,存取時間:2025-07-01,取自︰https://sites.google.com/view/signerlee/aboutsign
[17]史文漢、丁立芬,「手能生橋第一冊」,中華民國聾人協會,台北,台灣,第11版,1997-01。
[18]M. J. Cheok, Z. Omar, and M. H. Jaward, "A review of hand gesture and sign language recognition techniques," International Journal of Machine Learning and Cybernetics, vol. 10, no. 1, pp. 131–153, 2019.
[19]R.-H. Liang and M. Ouhyoung, "A real-time continuous gesture recognition system for sign language," in Proceedings third IEEE international conference on automatic face and gesture recognition, 1998: IEEE, pp. 558–567.
[20]F. Rosenblatt, "The perceptron: a probabilistic model for information storage and organization in the brain," Psychological review, vol. 65, no. 6, p. 386, 1958.
[21]M. Minsky and S. Papert, "An introduction to computational geometry," Cambridge tiass., HIT, vol. 479, no. 480, p. 104, 1969.
[22]D. E. Rumelhart, G. E. Hinton, and R. J. Williams, "Learning representations by back-propagating errors," nature, vol. 323, no. 6088, pp. 533-536, 1986.
[23]G. E. Hinton, S. Osindero, and Y.-W. Teh, "A fast learning algorithm for deep belief nets," Neural computation, vol. 18, no. 7, pp. 1527-1554, 2006.
[24]A. Krizhevsky, I. Sutskever, and G. E. Hinton, "ImageNet classification with deep convolutional neural networks," Advances in neural information processing systems, vol. 25, 2012.
[25]N. Wilt, The cuda handbook: A comprehensive guide to gpu programming. Pearson Education, 2013
[26]M. Abadi et al., "TensorFlow: A system for large-scale machine learning," in 12th USENIX symposium on operating systems design and implementation (OSDI 16), 2016, pp. 265-283.
[27]A. Paszke, "Pytorch: An imperative style, high-performance deep learning library," arXiv preprint arXiv:1912.01703, 2019.
[28]Z. Li, F. Liu, W. Yang, S. Peng, and J. Zhou, "A survey of convolutional neural networks: analysis, applications, and prospects," IEEE Transactions on Neural Networks and Learning Systems, vol. 33, pp. 6999–7019, 2020.
[29]K. He, X. Zhang, S. Ren, and J. Sun, "Deep residual learning for image recognition," in Proceedings of the IEEE conference on computer vision and pattern recognition, 2016, pp. 770–778.
[30]Z. Wu, S. Pan, F. Chen, G. Long, C. Zhang, and P. S. Yu, "A comprehensive survey on graph neural networks," IEEE Transactions on Neural Networks and Learning Systems, vol. 32, pp. 4–24, 2019.
[31]P. Velickovic, "Everything is connected: Graph neural networks," Current Opinion in Structural Biology, vol. 79, pp. 102538, 2023.
[32]B. Sanchez-Lengeling, E. Reif, A. Pearce, and A. Wiltschko, "A gentle introduction to graph neural networks," Distill, vol. 6, no. 8, Sept. 2021, doi: https://doi.org/10.23915/distill.00033.
[33]T. N. Kipf and M. Welling, "Semi-supervised classification with graph convolutional networks," arXiv preprint arXiv:1609.02907, 2016.
[34]S. Ji, W. Xu, M. Yang and K. Yu, "3D convolutional neural networks for human action recognition," IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 35, no. 1, pp. 221-231, Jan. 2013.
[35]C. Feichtenhofer, A. Pinz, and A. Zisserman , "Convolutional two-stream network fusion for video action recognition," in Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1933–1941.
[36]A. Arnab, M. Dehghani, G. Heigold, C. Sun, M. Luˇcic, and C. Schmid, "ViViT: A video vision transformer," in Proceedings of 2021 IEEE/CVF Conference on Computer Vision (ICCV), Montreal, Canada, pp. 6816–6826.
[37]K. Simonyan and A. Zisserman, "Two-stream convolutional networks for action recognition in videos," in Proceedings of the Neural Information Processing Systems (NIPS 2014), Montréal, Quebec, Canada, 2014, pp. 568–576.
[38]P. Zhang, C. Lan, J. Xing, W. Zeng, J. Xue, and N. Zheng, "View adaptive neural networks for high performance skeleton-based human action recognition," IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 41, pp. 1963–1978, 2018.
[39]D. Tran, H. Wang, L. Torresani, J. Ray, Y. Lecun, and M. Paluri, "A closer look at spatiotemporal convolutions for action recognition," in Proceedings of 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Salt Lake City, UT, USA, pp. 6450–6459.
[40]L. Shi, Y. Zhang, J. Cheng, and H. Lu, "Skeleton-based action recognition with multi-stream adaptive graph convolutional networks," IEEE Transactions on Image Processing, vol. 29, pp. 9532–9545, 2020.
[41]X. Gao, W. Hu, J. Tang, J. Liu, and Z. Guo, "Optimized skeleton-based action recognition via sparsified graph regression," in Proceedings of the 27th ACM International Conference on Multimedia, Nice, France, 2019, pp. 601–610.
[42]L. Hedegaard, N. Heidari, and A. Iosifidis, "Continual spatio-temporal graph convolutional networks," Pattern Recognition, vol. 140, pp. 109528, 2022.
[43]S. Garg, A. Saxena, and R. Gupta, "Yoga pose classification: A CNN and MediaPipe inspired deep learning approach for real-world application," Journal of Ambient Intelligence and Humanized Computing, vol. 14, pp. 16551–16562, 2023.
[44]R. Hachiuma, F. Sato, and T. Sekii, "Unified keypoint-based action recognition framework via structured keypoint pooling," in Proceedings of 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Vancouver, BC, Canada, pp. 22962–22971.
[45]M. Zhao, N. Lu and Y. Guan, "Classification of pilates using mediapipe and machine learning," IEEE Access, vol. 12, pp. 77133-77140, 2024.
[46]Z. Cao, G. Hidalgo, T. Simon, S.-E. Wei, and Y. Sheikh, "OpenPose: Realtime multi-person 2D pose estimation using part affinity," IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 43, pp. 172–186, 2018.
[47]Y. Zhang, Z. Kong, N. Funabiki, and C.-C. Hsu, "A study of a drawing exactness assessment method using localized normalized cross-correlations in a portrait drawing learning assistant system," Computers, vol. 13, pp. 215, 2024.
[48]F. Zhang, X. Zhu, H. Dai, M. Ye, and C. Zhu, "Distribution-aware coordinate representation for human pose estimation," in Proceedings of 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, WA, USA, pp. 7093–7102.
[49]W. Kay, J. Carreira, K. Simonyan, B. Zhang, C. Hillier, S. Vijayanarasimhan, F. Viola, T. Green, T. Back, A. Natsev, M. Suleyman, and A. Zisserman, "The kinetics human action video dataset," 2017, arXiv:1705.06950.
[50]C. C. de Amorim, D. Macêdo, and C. Zanchettin, "Spatial-temporal graph convolutional networks for sign language recognition," in Proceedings of the 28th International Conference on Artificial Neural Networks (ICANN), Munich, Germany, 2019, pp. 646–657.
[51]K. Nimisha and A. Jacob, "A brief review of the recent trends in sign language recognition," in Proceedings of 2020 International Conference on Communication and Signal Processing, Melmaruvathur, India, pp. 186–190.
[52]黃明翰,「使用深度學習進行基於影片的台灣手語辨識」,碩士論文,數據科學與工程研究所,陽明交通大學,2021。
[53]R. Rastgoo, K. Kiani, and S. Escalera, "Sign language recognition: A deep survey," Expert Systems with Applications, vol. 164, pp. 113794, 2021.
[54]D. K. Singh, "3D-CNN based dynamic gesture recognition for Indian sign language modeling," Procedia Computer Science, vol. 189, pp. 76–83, 2021.
[55]S. Jiang, B. Sun, L. Wang, Y. Bai, K. Li, and Y. Fu, "Skeleton aware multi-modal sign language recognition," in Proceedings of 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPRW), pp. 3408–3418.
[56]V. H. Iyer, U. M. Prakash, A. Vijay, and P. Sathishkumar, "Sign language detection using action recognition," in Proceedings of the 2nd International Conference on Advance Computing and Innovative Technologies in Engineering (ICACITE), 2022, pp. 1682–1685.
[57]R. Kumar, A. Bajpai, and A. Sinha, "MediaPipe and CNNs for real-time asl gesture recognition," 2023, arXiv:2305.05296.
[58]N. Naz, H. Sajid, S. Ali, O. Hasan, and M. K. Ehsan, "SIGNGRAPH: An efficient and accurate pose-based graph convolution approach toward sign language recognition," IEEE Access, vol. 11, pp. 19135–19147, 2023.
[59]A. S. M. Miah, M. A. M. Hasan, S.-W. Jang, H.-S. Lee, and J. Shin, "Multi-stream general and graph-based deep neural networks for skeletonbased sign language recognition," Electronics, vol. 12, No. 13, pp. 2841, 2023.
[60]P. Pannattee, W. Kumwilaisak, C. Hansakunbuntheung, N. Thatphithakkul, and C.-C. J. Kuo, "American sign language fingerspelling recognition in the wild with spatio temporal feature extraction and multi-task learning," Expert Systems with Applications, vol. 243, pp. 122901, 2024.
[61]T. Tao, Y. Zhao, T. Liu and J. Zhu, "Sign language recognition: A comprehensive review of traditional and deep learning approaches, datasets, and challenges," IEEE Access, vol. 12, pp. 75034-75060, 2024.
[62]E J Honesty Praiselin, G Manikandan, S. Vilma Veronica, and S. Hemalatha, "Sign language detection and recognition using MediaPipe and deep learning algorithm, " International Journal of Scientific Research in Science and Technology, vol. 11, no. 2, pp. 123–130, 2024.
[63]Y. Han, Y. Han and Q. Jiang, "A study on the STGCN-LSTM sign language recognition model based on phonological features of sign language," IEEE Access, vol. 13, pp. 74811–74820, 2025.
[64]教育部,「辭彙」,常用手語辭典資訊網,存取時間:2025-07-01,取自︰ https://special.moe.gov.tw/signlanguage/vocabulary
[65]蔡素娟、戴浩一、劉世凱、陳怡君,「簡介」,台灣手語線上辭典(中文版第四版),存取時間:2025-07-01,取自︰https://twtsl.ccu.edu.tw/TSL/
[66]A. Moryossef, "Optimizing hand region detection in mediapipe holistic full-body pose estimation to improve accuracy and avoid downstream errors," 2024, arXiv:2405.03545.
[67]B. Aksoy, E. Ozkan, and E. Ozdemir, "Real time arm movement simulation based on skeleton tracking with MediaPipe and ROS," in Proc. Int. Conf. on Electrical and Electronics Engineering (ELECO), Bursa, Turkey, 2023, pp. 975–979.
[68]M. Ahmadieh Khanesar and B. Branson, "Hand gesture-based human–robot interaction using MediaPipe and inverse kinematics in V-REP," in Proc. 15th Int. Conf. on Agents and Artificial Intelligence (ICAART), Lisbon, Portugal, 2023, pp. 321–328.
[69]陳彥霖,「立體數位影像相關法與深度學習系統整合應用於三維量測、姿態辨識、手臂控制」,碩士論文,機械工程學系,臺灣大學,2023。
[70]廖子程,「應用機器視覺於機械手臂隨機物件夾取與三維人體姿態偵測」,碩士論文,機械工程學系,中央大學,2024。
[71]A. Angelidis and G. Bampis, "A human–robot collaboration system for small production lines using RGB-D and AI-based gesture recognition," Machines, vol. 13, no. 3, p. 182, Mar. 2025.
[72]H. Pan, N. L. Wang, and Y. S. Qin, "A closed-form solution to eye-to-hand calibration towards visual grasping, industrial robot," Industrial Robot, Industrial Robot: An International Journal, vol. 41, no. 6, pp. 567–574, 2014.
[73]李俊則、張禎元,「光學視覺與機械手臂系統整合之校正方法介紹」,科儀新知,第 226 期,頁數24-36,3月,110年。
[74]「常規負載機器人系列-硬體設置說明書 TM5 系列」,1.09版,達明機器人公司,桃園,台灣,2024-03-05。
[75]S. Macenski, T. Foote, B. Gerkey, C. Lalancette, and W. Woodall, "Robot operating system 2: design, architecture, and uses in the wild," Science Robotics, vol. 7, no. 66, pp. eabm6074, 2022. [Online]. Available: https://www.science.org/doi/abs/10.1126/scirobotics.abm6074
[76]「東佑達CHG2 電動夾爪系列中文操作手冊」,202001版,東佑達自動化科技公司,台南,台灣。
[77]Intel® RealSenseTM Product Family D400 Series Datasheet, 19th ed., Intel Corp., Santa Clara, CA, USA, Oct. 2024. Accessed: Jul. 1, 2025. [Online]. Available: https://www.intelrealsense.com/depth-camera-d435/
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98761-
dc.description.abstract本研究旨在發展一套以深度學習為基礎的手語辨識系統,並將其應用於機械手臂的人機互動控制。研究動機主要來自於兩個方向。其一是協助聾啞人士在日常生活中的溝通,使其在公共服務、醫療照護等情境中能更自如地表達需求與想法。其二則是針對環境噪音干擾較嚴重的場域(如工廠),提供一種以手勢作為機械手臂輸入指令的替代方案,不僅具備抗噪音的優勢,亦便於遠距操控,進而提升操作效率、減少人員暴露於危險區域的風險,具備高度實務價值。
本研究先透過MediaPipe 模型獲取人體骨架座標,並針對這些骨架座標進行資料增強處理,包括正規化、標準化等操作,以提升模型對手勢變化的辨識能力。接著,將處理後的資料輸入至基於空間距離分群策略的時空圖卷積網路,進行訓練,以獲得可以辨識台灣手語的系統。在應用上,我們把這個手語辨識系統當作指派機械手臂任務的翻譯器,讓使用者可以使用手語來命令機械手臂工作。基本上,這些由手語轉換的控制指令是透過機器人操作系統傳遞給機械手臂來完成自主取物的任務。為協助機械手臂進行精準的實體互動,本系統亦搭配輪廓辨識方法來執行物件的偵測與定位,以強化整體應用的實用性與靈活性。
本系統設計以模組化與即時性為考量,具備約 95% 的手語動作辨識準確率與穩定的操作反應,適用於輔助溝通介面、特殊教育訓練場域,或其他需要非語音控制的智慧環境。此外,系統使用人體骨架座標作為主要特徵輸入,相較於傳統以影像為基礎的卷積神經網路方法,不僅能顯著降低所需訓練資料量,亦在資源受限的條件下維持良好的辨識準確度,避免因影像背景、光線等外部因素造成辨識干擾,展現高效且具彈性的實作潛力。研究亦探討資料處理與模型設計對辨識效能的影響,為後續應用提供技術依據。
zh_TW
dc.description.abstractThis study presents a deep learning-based sign language recognition system integrated with robotic arm control for human-robot interaction. The system is designed to support communication for individuals with hearing and speech impairments and to provide a gesture-based interface for robot control in noisy environments such as factories. Utilizing MediaPipe for human skeletal keypoint extraction, the system applies data augmentation techniques (normalization, standardization) followed by classification using a Spatial Temporal Graph Convolutional Network with the Spatial-Distance partitioning strategy (STGCN-SD). Recognized gestures are translated into control commands and executed by the robotic arm via the ROS2 framework. For object interaction, the system incorporates contour-based object detection and localization, enabling task-specific responses based on the recognized signs.
Achieving approximately 95% recognition accuracy, the system demonstrates real-time responsiveness and modular design, making it suitable for assistive communication, special education, and smart environments. Unlike traditional CNN-based methods, the use of skeletal data significantly reduces training data requirements and is less affected by background or lighting variations, enhancing efficiency and robustness. The research also explores the influence of data processing and model architecture on recognition performance, providing a foundation for future expansion in multi-modal input, sentence-level recognition, and cross-lingual sign language systems.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-08-19T16:06:09Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-08-19T16:06:09Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents誌 謝 I
摘 要 III
ABSTRACT V
目 次 VII
表目次 XI
圖目次 XIII
第一章 緒論 1
1.1 研究動機 1
1.2 文獻回顧 2
1.3 論文結構 4
第二章 手語辨識系統之相關基本原理 7
2.1 台灣手語和手語辨識方法的簡介 7
2.1.1 台灣手語的簡介 7
2.1.2 手語辨識的感測式裝置 8
2.1.3 手語辨識的視覺影像 9
2.2 深度學習 9
2.2.1 多層感知器 10
2.2.2 卷積神經網路 15
2.2.3 圖形神經網路 16
2.2.4 圖形卷積神經網路 18
2.3 動作辨識 20
2.4 人體姿態估計工具 21
2.4.1 OpenPose 21
2.4.2 MediaPipe 21
2.5 時空圖卷積網路 21
2.6 基於ST-GCN的手語辨識 22
第三章 建構台灣手語辨識系統 35
3.1 資料蒐集 35
3.2 建構手語的時空圖 36
3.2.1 六種手語關鍵點樣型 36
3.2.2 骨架標準化 37
3.3 台灣手語辨識模型的實作 38
3.3.1 空間距離分群策略 38
3.3.2 STGCN-SD 區塊 39
3.3.3 台灣手語辨識模型的架構 40
3.3.4 台灣手語辨識模型的訓練 41
3.4 台灣手語辨識的實驗結果 42
3.4.1 與使用ST-GCN的手語辨識系統比較 42
3.4.2 人體骨架的標準化 42
3.4.3 手語關鍵點樣型的比較 43
3.4.4 與先進的手語辨識系統比較 44
第四章 機械手臂自主取物的相關原理 61
4.1 機械手臂簡介 61
4.2 機器視覺 61
4.2.1 座標轉換 61
4.2.2 深度影像濾波器 63
4.3 物件辨識 64
4.4 機器手臂的控制系統:ROS 65
4.4.1 ROS 架構概述 65
4.4.2 ROS 的運算單元 – Node 65
4.4.3 ROS 的通訊方式 – Topic 66
4.4.4 節點之間交換的訊息 66
4.4.5 ROS 的通訊模式 – Services 67
4.4.6 ROS的Action機制 67
第五章 建構手語驅動機械手臂自主取物的系統 75
5.1 系統架構 75
5.2 實驗設備 75
5.2.1 機械手臂TM5-900 75
5.2.2 電動夾爪CHG2-S30-002-L-A001 75
5.2.3 深度相機RealSense D435 76
5.3 機械手臂TM5-900的機器視覺 76
5.3.1 Eye to hand校正 77
5.3.2 物件辨識與定位 78
5.3.3 台灣手語所對應的取物任務 79
5.4 手語驅動機械手臂自主取物系統的開發 79
5.4.1 台灣手語即時辨識系統 80
5.4.2 手語對機械手臂自主取物的控制 81
5.5 實驗成果與討論 82
5.5.1 實驗1:命令機械手臂將指定物品放到人的手上 83
5.5.2 實驗2:命令機械手臂放棄之前任務 83
5.5.3 實驗3:命令機械手臂更改取物任務 84
第六章 結論與未來展望 103
6.1 結論 103
6.2 未來展望 103
參考文獻 105
附錄一:台灣手語辨識系統的訓練過程與測試結果 113
A.1 辨識系統以27點手語骨架的訓練過程與測試結果 113
A.2 辨識系統以33點手語骨架的訓練過程與測試結果 117
A.3 辨識系統以35點手語骨架的訓練過程與測試結果 122
A.4 辨識系統以37點手語骨架的訓練過程與測試結果 126
A.5 辨識系統以43點手語骨架的訓練過程與測試結果 131
A.6 辨識系統以45點手語骨架的訓練過程與測試結果 136
-
dc.language.isozh_TW-
dc.subject深度學習zh_TW
dc.subject時空圖形卷積神經網路zh_TW
dc.subject手語辨識zh_TW
dc.subject機器人操作系統zh_TW
dc.subject機械手臂zh_TW
dc.subject聾啞溝通輔助zh_TW
dc.subject人體姿態估計zh_TW
dc.subjectST-GCNen
dc.subjectHuman Pose Estimationen
dc.subjectAssistive Technologyen
dc.subjectRobotic Armen
dc.subjectROS2en
dc.subjectSign Language Recognitionen
dc.subjectDeep Learningen
dc.title基於時空圖卷積網路與深度影像之台灣手語辨識與機械手臂手勢控制介面zh_TW
dc.titleTaiwan Sign Language Recognition and Human-Robot Collaborative Gesture Control for Robotic Arms Based on Spatial-Temporal Graph Convolutional Networks and Stereo Visionen
dc.typeThesis-
dc.date.schoolyear113-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee郭重顯;吳亦莊;廖展誼zh_TW
dc.contributor.oralexamcommitteeChung-Hsien Kuo;Yi-Zhuang Wu;Chan-Yi Liaoen
dc.subject.keyword深度學習,時空圖形卷積神經網路,手語辨識,機器人操作系統,機械手臂,聾啞溝通輔助,人體姿態估計,zh_TW
dc.subject.keywordDeep Learning,ST-GCN,Sign Language Recognition,ROS2,Robotic Arm,Assistive Technology,Human Pose Estimation,en
dc.relation.page140-
dc.identifier.doi10.6342/NTU202503890-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2025-08-11-
dc.contributor.author-college工學院-
dc.contributor.author-dept機械工程學系-
dc.date.embargo-lift2030-08-05-
顯示於系所單位:機械工程學系

文件中的檔案:
檔案 大小格式 
ntu-113-2.pdf
  此日期後於網路公開 2030-08-05
7.03 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved