請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98757完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 黃鐘揚 | zh_TW |
| dc.contributor.advisor | Chung-Yang Huang | en |
| dc.contributor.author | 王瀞桓 | zh_TW |
| dc.contributor.author | Ching-Huan Wang | en |
| dc.date.accessioned | 2025-08-19T16:05:15Z | - |
| dc.date.available | 2025-08-20 | - |
| dc.date.copyright | 2025-08-19 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-08-06 | - |
| dc.identifier.citation | [1] Y. M. Ahipo and P. Traore. Letter to the editor: A robust iterative scheme for finite volume discretization of diffusive flux on highly skewed meshes. J. Comput. Appl. Math., 231(1):478–491, Sept. 2009.
[2] Ansys. Ansys icepak cooling simulation software for electronic components, 2025. Accessed: July 2025. [3] D. Arndt, W. Bangerth, D. Davydov, T. Heister, L. Heltai, M. Kronbichler, M. Maier, J.-P. Pelteret, B. Turcksin, and D. Wells. The deal.II finite element library: Design, features, and insights. Computers & Mathematics with Applications, 81:407–422, Jan. 2021. [4] J. Chang. 3dblox: Unleash the ultimate 3dic design productivity. In Proceedings of the 2024 International Symposium on Physical Design, ISPD ’24, page 215, New York, NY, USA, 2024. Association for Computing Machinery. [5] L. Chen, W. Jin, and S. X.-D. Tan. Fast thermal analysis for chiplet design based on graph convolution networks. In 2022 27th Asia and South Pacific Design Automation Conference (ASP-DAC), pages 485–492. IEEE, 2022. [6] V. A. Chhabria, V. Ahuja, A. Prabhu, N. Patil, P. Jain, and S. S. Sapatnekar. Thermal and ir drop analysis using convolutional encoder-decoder networks. In Proceedings of the 26th Asia and South Pacific Design Automation Conference, pages 690–696, 2021. [7] R. Eymard, T. Gallouët, and R. Herbin. Finite volume methods. Handbook of numerical analysis, 7:713–1018, 2000. [8] FIFTY2 Technology GmbH. Conduction through a composite wall, 2022. Accessed: 2025-08-03. [9] C. Geuzaine and J.-F. Remacle. Gmsh: A 3d finite element mesh generator with built-in pre- and post-processing facilities, 2009. Version 4.x, Accessed: July 2025. [10] P. Jain, S. Singh, and Rizwan-uddin. Analytical solution to transient asymmetric heat conduction in a multilayer annulus. Journal of Heat Transfer-transactions of The Asme - J HEAT TRANSFER, 131, 01 2009. [11] H. Jasak. Openfoam: Open source cfd in research and industry. International Journal of Naval Architecture and Ocean Engineering, 1(2):89–94, 2009. [12] R. J. LeVeque. Finite difference methods for differential equations. Draft version for use in AMath, 585(6):112, 1998. [13] R. J. LeVeque. Finite volume methods for hyperbolic problems, volume 31. Cambridge university press, 2002. [14] Z. Liu, Y. Li, J. Hu, X. Yu, S. Shiau, X. Ai, Z. Zeng, and Z. Zhang. Deepoheat: operator learning-based ultra-fast thermal simulation in 3d-ic design. In 2023 60th ACM/IEEE Design Automation Conference (DAC), pages 1–6. IEEE, 2023. [15] F. Moukalled, L. Mangani, and M. Darwish. The finite volume method. In The finite volume method in computational fluid dynamics: An advanced introduction with OpenFOAM® and Matlab, pages 103–135. Springer, 2015. [16] W. L. Oberkampf and T. G. Trucano. Verification and validation benchmarks. Nuclear Engineering and Design, 238(3):716–743, 2008. Benchmarking of CFD Codes for Application to Nuclear Reactor Safety. [17] M. N. Özişik, H. R. Orlande, M. J. Colaço, and R. M. Cotta. Finite difference methods in heat transfer. CRC press, 2017. [18] R. Ranade, H. He, J. Pathak, N. Chang, A. Kumar, and J. Wen. A thermal machine learning solver for chip simulation. In Proceedings of the 2022 ACM/IEEE Workshop on Machine Learning for CAD, pages 111–117, 2022. [19] A. Ribés and A. Bruneton. Visualizing results in the salome platform for large numerical simulations: An integration of paraview. In 2014 IEEE 4th Symposium on Large Data Analysis and Visualization (LDAV), pages 119–120, 2014. [20] J. Riegel, W. Mayer, and Y. van Havre. Freecad. Freecadspec2002, 2016. [21] J. R. Shewchuk. An introduction to the conjugate gradient method without the agonizing pain. Technical report, USA, 1994. [22] H. Si. Tetgen, a delaunay-based quality tetrahedral mesh generator. ACM Transactions on Mathematical Software (TOMS), 41(2):11, 2015. [23] B. Wang and P. Mazumder. Accelerated chip-level thermal analysis using multilayer green’s function. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 26(2):325–344, 2007. [24] R. Zhao, W. Du, F. Shi, and Y. Cao. Recovery based finite difference scheme on unstructured mesh. Applied Mathematics Letters, 129:107935, 2022. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98757 | - |
| dc.description.abstract | 隨著三維積體電路(3D-ICs)的日益普及,精確的熱分析對於確保其性能與可靠性至關重要。本論文提出了一個跨平台的自動化熱模擬框架,專為TSMC 3Dblox 抽象描述的3D-ICs 設計而開發。該框架整合了開源工具——FreeCAD、Gmsh 和deal.II——從設計解析到有限元素法(FEM)熱模擬,提供完整的自動化流程。
本論文所提出的系統支援異質3D-ICs結構的穩態與暫態熱分與商業工具Ansys Icepak 的比較結果顯示,我們的框架在處理具有異質材料的晶粒時能提供更高的準確度。此外,其執行效能相對於自由度(DOF)數量展現出近乎線性的可擴展性,確保在網格解析度提升時仍能保持穩定效能。 此開源解決方案可作為基於3Dblox的熱模擬流程的實用且可擴展替代方案,為早期3D-ICs熱設計提供高度可自訂的基礎。本論文詳細探討了系統架構、建模策略與關鍵實作細節。 | zh_TW |
| dc.description.abstract | As 3D integrated circuits (3D-ICs) become more prevalent, accurate thermal analysis is critical to ensure their performance and reliability. This thesis presents a cross-platform, automated thermal simulation framework tailored for 3D-ICs using the TSMC 3Dblox abstraction. Leveraging open-source tools—FreeCAD, Gmsh, and deal.II—the framework supports a fully automated pipeline from layout parsing to finite element thermal simulation.
The proposed system supports both steady-state and transient thermal analysis for heterogeneous 3D-ICs structures. When benchmarked against the commercial tool Ansys Icepak, our framework demonstrates higher accuracy in cases involving chiplets with heterogeneous materials. Moreover, it exhibits near-linear scalability with respect to the number of degrees of freedom(DOF), ensuring consistent performance as mesh resolution increases. This open-source solution serves as a practical and extensible alternative for 3Dblox based thermal simulation workflows, providing a customizable foundation for early-stage 3D-ICs thermal design. The thesis discusses the system architecture, modeling strategies, and key implementation decisions. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-08-19T16:05:15Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-08-19T16:05:15Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | Acknowledgements i
摘要 iii Abstract iv Contents vi List of Figures ix List of Tables xi Chapter 1 Introduction 1 1.1 Background and Motivation . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Research Objectives and Contributions . . . . . . . . . . . . . . . . 3 1.3 Thesis Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 Chapter 2 Literature Review and Problem Context 5 2.1 IEEE Standard 3Dblox: Design Abstraction and Workflow . . . . . . 5 2.1.1 Overview of 3Dblox . . . . . . . . . . . . . . . . . . . . . . . . . 6 2.1.2 Blackbox Stage (Focus of This Work) . . . . . . . . . . . . . . . . 6 2.2 Review of Thermal PDE Solvers . . . . . . . . . . . . . . . . . . . . 7 2.3 Finite Difference Method . . . . . . . . . . . . . . . . . . . . . . . . 9 2.4 Finite Volume Method . . . . . . . . . . . . . . . . . . . . . . . . . 12 2.5 Finite Element Method . . . . . . . . . . . . . . . . . . . . . . . . . 15 Chapter 3 System Architecture and Implementation 17 3.1 Overview of the Framework . . . . . . . . . . . . . . . . . . . . . . 17 3.1.1 3Dblox Parser . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 3.1.2 FreeCAD Integration for Geometry Construction . . . . . . . . . . 19 3.1.3 Gmsh-Based Mesh Generation . . . . . . . . . . . . . . . . . . . . 19 3.1.4 FEM Thermal Solver Analysis . . . . . . . . . . . . . . . . . . . . 20 3.2 CAD Generation Using FreeCAD . . . . . . . . . . . . . . . . . . . 20 3.2.1 What is FreeCAD and Its Role . . . . . . . . . . . . . . . . . . . . 20 3.2.2 YAML Input Format and Geometry Parameters . . . . . . . . . . . 21 3.2.3 Python API Workflow for STEP Generation . . . . . . . . . . . . . 24 3.2.4 Example Output and Visual Illustration . . . . . . . . . . . . . . . . 24 3.3 Mesh Generation Using Gmsh . . . . . . . . . . . . . . . . . . . . . 26 3.3.1 What is Gmsh and Its Role . . . . . . . . . . . . . . . . . . . . . . 27 3.3.2 Mesh Workflow and Element Control . . . . . . . . . . . . . . . . 27 3.3.3 Example Output and Visual Illustration . . . . . . . . . . . . . . . . 31 3.4 FEM Simulation Using deal.II . . . . . . . . . . . . . . . . . . . . . 32 3.4.1 Solver Integration and API Design . . . . . . . . . . . . . . . . . . 32 3.4.2 Steady-State Heat Equation: Weak Formulation and Discretization . 33 3.4.3 Boundary Conditions: Weak Formulation and Discretization . . . . 35 3.4.4 Transient Heat Equation: Weak Formulation and Time Integration . 42 3.4.5 Simulation Workflow and Matrix Assembly . . . . . . . . . . . . . 44 3.4.6 Example Output and Visual Illustration . . . . . . . . . . . . . . . . 50 Chapter 4 Validation and Results 55 4.1 Analytical Comparisons: FEM v.s. Icepak . . . . . . . . . . . . . . . 56 4.1.1 Case 1: Single Cube with Uniform Conductivity . . . . . . . . . . . 57 4.1.2 Case 2: Stacked Cubes with Different Material . . . . . . . . . . . 62 4.1.3 Case 3: Stacked Cubes with Power Source . . . . . . . . . . . . . . 67 4.2 Reasonable Simulation Settings . . . . . . . . . . . . . . . . . . . . 72 4.3 Scalability Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 74 Chapter 5 Conclusions and Future Work 78 5.1 Summary of Contributions . . . . . . . . . . . . . . . . . . . . . . . 78 5.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 References 81 | - |
| dc.language.iso | en | - |
| dc.subject | deal.II | zh_TW |
| dc.subject | Gmsh | zh_TW |
| dc.subject | 熱模擬 | zh_TW |
| dc.subject | 3D-ICs | zh_TW |
| dc.subject | TSMC 3Dblox | zh_TW |
| dc.subject | 有限元素法 | zh_TW |
| dc.subject | FreeCAD | zh_TW |
| dc.subject | thermal simulation | en |
| dc.subject | deal.II | en |
| dc.subject | FreeCAD | en |
| dc.subject | Gmsh | en |
| dc.subject | TSMC 3Dblox | en |
| dc.subject | finite element method | en |
| dc.subject | 3D-ICs | en |
| dc.title | 符合 3Dblox 標準的基於有限元素法(FEM)的三維積體電路 (3D-IC) 熱模擬框架 | zh_TW |
| dc.title | A 3Dblox-Standard Compliant FEM-Based Thermal Simulation Framework for 3D-IC Designs | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 張耀文;江蕙如;甘滄棋;張志偉;方劭云 | zh_TW |
| dc.contributor.oralexamcommittee | Yao-Wen Chang;Hui-Ru Jiang;Tsang-Chi Kan;Jim Chang;Shao-Yun Fang | en |
| dc.subject.keyword | 3D-ICs,熱模擬,TSMC 3Dblox,有限元素法,deal.II,FreeCAD,Gmsh, | zh_TW |
| dc.subject.keyword | 3D-ICs,thermal simulation,TSMC 3Dblox,finite element method,deal.II,FreeCAD,Gmsh, | en |
| dc.relation.page | 84 | - |
| dc.identifier.doi | 10.6342/NTU202503806 | - |
| dc.rights.note | 同意授權(限校園內公開) | - |
| dc.date.accepted | 2025-08-12 | - |
| dc.contributor.author-college | 電機資訊學院 | - |
| dc.contributor.author-dept | 電機工程學系 | - |
| dc.date.embargo-lift | 2030-08-05 | - |
| 顯示於系所單位: | 電機工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-2.pdf 未授權公開取用 | 17.7 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
