Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 電機工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98757
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor黃鐘揚zh_TW
dc.contributor.advisorChung-Yang Huangen
dc.contributor.author王瀞桓zh_TW
dc.contributor.authorChing-Huan Wangen
dc.date.accessioned2025-08-19T16:05:15Z-
dc.date.available2025-08-20-
dc.date.copyright2025-08-19-
dc.date.issued2025-
dc.date.submitted2025-08-06-
dc.identifier.citation[1] Y. M. Ahipo and P. Traore. Letter to the editor: A robust iterative scheme for finite volume discretization of diffusive flux on highly skewed meshes. J. Comput. Appl. Math., 231(1):478–491, Sept. 2009.
[2] Ansys. Ansys icepak cooling simulation software for electronic components, 2025. Accessed: July 2025.
[3] D. Arndt, W. Bangerth, D. Davydov, T. Heister, L. Heltai, M. Kronbichler, M. Maier, J.-P. Pelteret, B. Turcksin, and D. Wells. The deal.II finite element library: Design, features, and insights. Computers & Mathematics with Applications, 81:407–422, Jan. 2021.
[4] J. Chang. 3dblox: Unleash the ultimate 3dic design productivity. In Proceedings of the 2024 International Symposium on Physical Design, ISPD ’24, page 215, New York, NY, USA, 2024. Association for Computing Machinery.
[5] L. Chen, W. Jin, and S. X.-D. Tan. Fast thermal analysis for chiplet design based on graph convolution networks. In 2022 27th Asia and South Pacific Design Automation Conference (ASP-DAC), pages 485–492. IEEE, 2022.
[6] V. A. Chhabria, V. Ahuja, A. Prabhu, N. Patil, P. Jain, and S. S. Sapatnekar. Thermal and ir drop analysis using convolutional encoder-decoder networks. In Proceedings of the 26th Asia and South Pacific Design Automation Conference, pages 690–696, 2021.
[7] R. Eymard, T. Gallouët, and R. Herbin. Finite volume methods. Handbook of numerical analysis, 7:713–1018, 2000.
[8] FIFTY2 Technology GmbH. Conduction through a composite wall, 2022. Accessed: 2025-08-03.
[9] C. Geuzaine and J.-F. Remacle. Gmsh: A 3d finite element mesh generator with built-in pre- and post-processing facilities, 2009. Version 4.x, Accessed: July 2025.
[10] P. Jain, S. Singh, and Rizwan-uddin. Analytical solution to transient asymmetric heat conduction in a multilayer annulus. Journal of Heat Transfer-transactions of The Asme - J HEAT TRANSFER, 131, 01 2009.
[11] H. Jasak. Openfoam: Open source cfd in research and industry. International Journal of Naval Architecture and Ocean Engineering, 1(2):89–94, 2009.
[12] R. J. LeVeque. Finite difference methods for differential equations. Draft version for use in AMath, 585(6):112, 1998.
[13] R. J. LeVeque. Finite volume methods for hyperbolic problems, volume 31. Cambridge university press, 2002.
[14] Z. Liu, Y. Li, J. Hu, X. Yu, S. Shiau, X. Ai, Z. Zeng, and Z. Zhang. Deepoheat: operator learning-based ultra-fast thermal simulation in 3d-ic design. In 2023 60th ACM/IEEE Design Automation Conference (DAC), pages 1–6. IEEE, 2023.
[15] F. Moukalled, L. Mangani, and M. Darwish. The finite volume method. In The finite volume method in computational fluid dynamics: An advanced introduction with OpenFOAM® and Matlab, pages 103–135. Springer, 2015.
[16] W. L. Oberkampf and T. G. Trucano. Verification and validation benchmarks. Nuclear Engineering and Design, 238(3):716–743, 2008. Benchmarking of CFD Codes for Application to Nuclear Reactor Safety.
[17] M. N. Özişik, H. R. Orlande, M. J. Colaço, and R. M. Cotta. Finite difference methods in heat transfer. CRC press, 2017.
[18] R. Ranade, H. He, J. Pathak, N. Chang, A. Kumar, and J. Wen. A thermal machine learning solver for chip simulation. In Proceedings of the 2022 ACM/IEEE Workshop on Machine Learning for CAD, pages 111–117, 2022.
[19] A. Ribés and A. Bruneton. Visualizing results in the salome platform for large numerical simulations: An integration of paraview. In 2014 IEEE 4th Symposium on Large Data Analysis and Visualization (LDAV), pages 119–120, 2014.
[20] J. Riegel, W. Mayer, and Y. van Havre. Freecad. Freecadspec2002, 2016.
[21] J. R. Shewchuk. An introduction to the conjugate gradient method without the agonizing pain. Technical report, USA, 1994.
[22] H. Si. Tetgen, a delaunay-based quality tetrahedral mesh generator. ACM Transactions on Mathematical Software (TOMS), 41(2):11, 2015.
[23] B. Wang and P. Mazumder. Accelerated chip-level thermal analysis using multilayer green’s function. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 26(2):325–344, 2007.
[24] R. Zhao, W. Du, F. Shi, and Y. Cao. Recovery based finite difference scheme on unstructured mesh. Applied Mathematics Letters, 129:107935, 2022.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98757-
dc.description.abstract隨著三維積體電路(3D-ICs)的日益普及,精確的熱分析對於確保其性能與可靠性至關重要。本論文提出了一個跨平台的自動化熱模擬框架,專為TSMC 3Dblox 抽象描述的3D-ICs 設計而開發。該框架整合了開源工具——FreeCAD、Gmsh 和deal.II——從設計解析到有限元素法(FEM)熱模擬,提供完整的自動化流程。
本論文所提出的系統支援異質3D-ICs結構的穩態與暫態熱分與商業工具Ansys Icepak 的比較結果顯示,我們的框架在處理具有異質材料的晶粒時能提供更高的準確度。此外,其執行效能相對於自由度(DOF)數量展現出近乎線性的可擴展性,確保在網格解析度提升時仍能保持穩定效能。
此開源解決方案可作為基於3Dblox的熱模擬流程的實用且可擴展替代方案,為早期3D-ICs熱設計提供高度可自訂的基礎。本論文詳細探討了系統架構、建模策略與關鍵實作細節。
zh_TW
dc.description.abstractAs 3D integrated circuits (3D-ICs) become more prevalent, accurate thermal analysis is critical to ensure their performance and reliability. This thesis presents a cross-platform, automated thermal simulation framework tailored for 3D-ICs using the TSMC 3Dblox abstraction. Leveraging open-source tools—FreeCAD, Gmsh, and deal.II—the framework supports a fully automated pipeline from layout parsing to finite element thermal simulation.
The proposed system supports both steady-state and transient thermal analysis for heterogeneous 3D-ICs structures. When benchmarked against the commercial tool Ansys Icepak, our framework demonstrates higher accuracy in cases involving chiplets with heterogeneous materials. Moreover, it exhibits near-linear scalability with respect to the number of degrees of freedom(DOF), ensuring consistent performance as mesh resolution increases.
This open-source solution serves as a practical and extensible alternative for 3Dblox based thermal simulation workflows, providing a customizable foundation for early-stage 3D-ICs thermal design. The thesis discusses the system architecture, modeling strategies, and key implementation decisions.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-08-19T16:05:15Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-08-19T16:05:15Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontentsAcknowledgements i
摘要 iii
Abstract iv
Contents vi
List of Figures ix
List of Tables xi
Chapter 1 Introduction 1
1.1 Background and Motivation . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Research Objectives and Contributions . . . . . . . . . . . . . . . . 3
1.3 Thesis Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
Chapter 2 Literature Review and Problem Context 5
2.1 IEEE Standard 3Dblox: Design Abstraction and Workflow . . . . . . 5
2.1.1 Overview of 3Dblox . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.1.2 Blackbox Stage (Focus of This Work) . . . . . . . . . . . . . . . . 6
2.2 Review of Thermal PDE Solvers . . . . . . . . . . . . . . . . . . . . 7
2.3 Finite Difference Method . . . . . . . . . . . . . . . . . . . . . . . . 9
2.4 Finite Volume Method . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.5 Finite Element Method . . . . . . . . . . . . . . . . . . . . . . . . . 15
Chapter 3 System Architecture and Implementation 17
3.1 Overview of the Framework . . . . . . . . . . . . . . . . . . . . . . 17
3.1.1 3Dblox Parser . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.1.2 FreeCAD Integration for Geometry Construction . . . . . . . . . . 19
3.1.3 Gmsh-Based Mesh Generation . . . . . . . . . . . . . . . . . . . . 19
3.1.4 FEM Thermal Solver Analysis . . . . . . . . . . . . . . . . . . . . 20
3.2 CAD Generation Using FreeCAD . . . . . . . . . . . . . . . . . . . 20
3.2.1 What is FreeCAD and Its Role . . . . . . . . . . . . . . . . . . . . 20
3.2.2 YAML Input Format and Geometry Parameters . . . . . . . . . . . 21
3.2.3 Python API Workflow for STEP Generation . . . . . . . . . . . . . 24
3.2.4 Example Output and Visual Illustration . . . . . . . . . . . . . . . . 24
3.3 Mesh Generation Using Gmsh . . . . . . . . . . . . . . . . . . . . . 26
3.3.1 What is Gmsh and Its Role . . . . . . . . . . . . . . . . . . . . . . 27
3.3.2 Mesh Workflow and Element Control . . . . . . . . . . . . . . . . 27
3.3.3 Example Output and Visual Illustration . . . . . . . . . . . . . . . . 31
3.4 FEM Simulation Using deal.II . . . . . . . . . . . . . . . . . . . . . 32
3.4.1 Solver Integration and API Design . . . . . . . . . . . . . . . . . . 32
3.4.2 Steady-State Heat Equation: Weak Formulation and Discretization . 33
3.4.3 Boundary Conditions: Weak Formulation and Discretization . . . . 35
3.4.4 Transient Heat Equation: Weak Formulation and Time Integration . 42
3.4.5 Simulation Workflow and Matrix Assembly . . . . . . . . . . . . . 44
3.4.6 Example Output and Visual Illustration . . . . . . . . . . . . . . . . 50
Chapter 4 Validation and Results 55
4.1 Analytical Comparisons: FEM v.s. Icepak . . . . . . . . . . . . . . . 56
4.1.1 Case 1: Single Cube with Uniform Conductivity . . . . . . . . . . . 57
4.1.2 Case 2: Stacked Cubes with Different Material . . . . . . . . . . . 62
4.1.3 Case 3: Stacked Cubes with Power Source . . . . . . . . . . . . . . 67
4.2 Reasonable Simulation Settings . . . . . . . . . . . . . . . . . . . . 72
4.3 Scalability Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 74
Chapter 5 Conclusions and Future Work 78
5.1 Summary of Contributions . . . . . . . . . . . . . . . . . . . . . . . 78
5.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
References 81
-
dc.language.isoen-
dc.subjectdeal.IIzh_TW
dc.subjectGmshzh_TW
dc.subject熱模擬zh_TW
dc.subject3D-ICszh_TW
dc.subjectTSMC 3Dbloxzh_TW
dc.subject有限元素法zh_TW
dc.subjectFreeCADzh_TW
dc.subjectthermal simulationen
dc.subjectdeal.IIen
dc.subjectFreeCADen
dc.subjectGmshen
dc.subjectTSMC 3Dbloxen
dc.subjectfinite element methoden
dc.subject3D-ICsen
dc.title符合 3Dblox 標準的基於有限元素法(FEM)的三維積體電路 (3D-IC) 熱模擬框架zh_TW
dc.titleA 3Dblox-Standard Compliant FEM-Based Thermal Simulation Framework for 3D-IC Designsen
dc.typeThesis-
dc.date.schoolyear113-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee張耀文;江蕙如;甘滄棋;張志偉;方劭云zh_TW
dc.contributor.oralexamcommitteeYao-Wen Chang;Hui-Ru Jiang;Tsang-Chi Kan;Jim Chang;Shao-Yun Fangen
dc.subject.keyword3D-ICs,熱模擬,TSMC 3Dblox,有限元素法,deal.II,FreeCAD,Gmsh,zh_TW
dc.subject.keyword3D-ICs,thermal simulation,TSMC 3Dblox,finite element method,deal.II,FreeCAD,Gmsh,en
dc.relation.page84-
dc.identifier.doi10.6342/NTU202503806-
dc.rights.note同意授權(限校園內公開)-
dc.date.accepted2025-08-12-
dc.contributor.author-college電機資訊學院-
dc.contributor.author-dept電機工程學系-
dc.date.embargo-lift2030-08-05-
顯示於系所單位:電機工程學系

文件中的檔案:
檔案 大小格式 
ntu-113-2.pdf
  未授權公開取用
17.7 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved