請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98753完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 謝之真 | zh_TW |
| dc.contributor.advisor | Chih-Chen Hsieh | en |
| dc.contributor.author | 張沁榕 | zh_TW |
| dc.contributor.author | Chin-Jung Chang | en |
| dc.date.accessioned | 2025-08-18T16:21:25Z | - |
| dc.date.available | 2025-08-19 | - |
| dc.date.copyright | 2025-08-18 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-08-06 | - |
| dc.identifier.citation | E. R. Mardis, "Next-generation DNA sequencing methods," Annu. Rev. Genomics Hum. Genet., vol. 9, no. 1, pp. 387-402, 2008.
W. Reisner et al., "Statics and dynamics of single DNA molecules confined in nanochannels," Physical Review Letters, vol. 94, no. 19, May 2005, Art no. 196101, doi: 10.1103/PhysRevLett.94.196101. B. H. Zimm, "Extension in flow of a DNA molecule tethered at one end," Macromolecules, vol. 31, no. 18, pp. 6089-6098, Sep 1998. [Online]. Available: <Go to ISI>://WOS:000075869700018. R. G. Larson, "The rheology of dilute solutions of flexible polymers: Progress and problems," Journal of Rheology, vol. 49, no. 1, pp. 1-70, Jan-Feb 2005, doi: 10.1122/1.1835336. I. Teraoka, "Polymer solutions: An introduction to physical properties," 2002. S. Raccosta et al., "Scaling Concepts in Serpin Polymer Physics," Materials, vol. 14, no. 10, May 2021, Art no. 2577, doi: 10.3390/ma14102577. I. Teraoka, "Models of Polymer Chains," in Polymer Solutions: John Wiley & Sons, Inc., 2002, pp. 1-67. M. Rubinstein and R. H. Colby, Polymer physics. Oxford university press, 2003. I. Teraoka and P. Solutions, "An introduction to physical properties," Polymer Solutions, 2002. C. Cruz, F. Chinesta, and G. Regnier, "Review on the Brownian dynamics simulation of bead-rod-spring models encountered in computational rheology," Archives of Computational Methods in Engineering, vol. 19, pp. 227-259, 2012. J. L. Viovy, "Electrophoresis of DNA and other polyelectrolytes: Physical mechanisms," Reviews of Modern Physics, vol. 72, no. 3, pp. 813-872, Jul 2000. [Online]. Available: <Go to ISI>://WOS:000088689200006. L. Gan, "Insulator-Based Dielectrophoretic Manipulation of DNA in a Microfluidic Device," Arizona State University, 2015. J. Tang, N. Du, and P. S. Doyle, "Compression and self-entanglement of single DNA molecules under uniform electric field," Proceedings of the National Academy of Sciences of the United States of America, vol. 108, no. 39, pp. 16153-16158, Sep 2011, doi: 10.1073/pnas.1105547108. M. H. Oddy, J. G. Santiago, and J. C. Mikkelsen, "Electrokinetic instability micromixing," Analytical Chemistry, vol. 73, no. 24, pp. 5822-5832, Dec 2001, doi: 10.1021/ac0155411. L. Chong, "Molecular cloning - A laboratory manual, 3rd edition," Science, vol. 292, no. 5516, pp. 446-446, Apr 2001. [Online]. Available: <Go to ISI>://WOS:000168187300027. B. M. Olivera, P. Baine, and N. Davidson, "Electrophoresis of the nucleic acids," Biopolymers: Original Research on Biomolecules, vol. 2, no. 3, pp. 245-257, 1964. J.-L. Viovy, "Electrophoresis of DNA and other polyelectrolytes: Physical mechanisms," Reviews of Modern Physics, vol. 72, no. 3, p. 813, 2000. D. Tietz, Nucleic acid electrophoresis. Springer Science & Business Media, 2012. D. C. Schwartz and C. R. Cantor, "Separation of yeast chromosome-sized DNAs by pulsed field gradient gel electrophoresis," cell, vol. 37, no. 1, pp. 67-75, 1984. C. G. Elena and V. Enrique, "Analysis of Chromosomal Replication Progression by Gel Electrophoresis," in Gel Electrophoresis, M. Sameh Ed. Rijeka: IntechOpen, 2012, p. Ch. 13. E. C. Guzmán and E. Viguera, "Analysis of Chromosomal Replication Progression by Gel Electrophoresis," GEL ELECTROPHORESIS–ADVANCED TECHNIQUES, p. 229, 2012. B. Birren and E. Lai, Pulsed field gel electrophoresis: a practical guide. Academic Press, 2012. N. Kaji et al., "Separation of Long DNA Molecules by Quartz Nanopillar Chips under a Direct Current Electric Field," Analytical Chemistry, vol. 76, no. 1, pp. 15-22, 2004/01/01 2003, doi: 10.1021/ac030303m. J. Tang, N. Du, and P. S. Doyle, "Compression and self-entanglement of single DNA molecules under uniform electric field," Proceedings of the National Academy of Sciences, vol. 108, no. 39, pp. 16153-16158, 2011. J. Ou, S. J. Carpenter, and K. D. Dorfman, "Onset of channeling during DNA electrophoresis in a sparse ordered post array," Biomicrofluidics, vol. 4, no. 1, 2010. J. Cho and K. D. Dorfman, "Brownian dynamics simulations of electrophoretic DNA separations in a sparse ordered post array," Journal of Chromatography A, vol. 1217, no. 34, pp. 5522-5528, Aug 2010, doi: 10.1016/j.chroma.2010.06.057. S. G. Park, D. W. Olson, and K. D. Dorfman, "DNA electrophoresis in a nanofence array," Lab on a Chip, vol. 12, no. 8, pp. 1463-1470, 2012, doi: 10.1039/c2lc00016d. Z. Chen and K. D. Dorfman, "Comparison of microfabricated hexagonal and lamellar post arrays for DNA electrophoresis," Electrophoresis, vol. 35, no. 5, pp. 654-661, Mar 2014, doi: 10.1002/elps.201300381. 陳致安, "以布朗動態法模擬DNA於圓柱陣列微流道中之電泳分離," 化學工程學研究所, 國立臺灣大學, 2015年, 2015. L. R. Huang, E. C. Cox, R. H. Austin, and J. C. Sturm, "Continuous particle separation through deterministic lateral displacement," Science, vol. 304, no. 5673, pp. 987-990, 2004. B. H. Wunsch et al., "Gel-on-a-chip: continuous, velocity-dependent DNA separation using nanoscale lateral displacement," Lab on a Chip, vol. 19, no. 9, pp. 1567-1578, May 2019, doi: 10.1039/c8lc01408f. O. E. Ström, J. P. Beech, and J. O. Tegenfeldt, "High-Throughput Separation of Long DNA in Deterministic Lateral Displacement Arrays," Micromachines, vol. 13, no. 10, Oct 2022, Art no. 1754, doi: 10.3390/mi13101754. K. A. Dill, "Theory for the separation of very large DNA molecules by radial migration," Biophysical Chemistry, vol. 10, no. 3-4, pp. 327-334, 1979. L. Jiang and R. G. Larson, "Multiscale modeling of polymer flow-induced migration and size separation in a microfluidic contraction flow," Journal of Non-Newtonian Fluid Mechanics, vol. 211, pp. 84-98, 2014. E. Hajizadeh and R. G. Larson, "Stress-gradient-induced polymer migration in Taylor–Couette flow," Soft Matter, vol. 13, no. 35, pp. 5942-5949, 2017. 舒稚翔, "結合圓柱陣列與漸擴微流道以正向力分離 DNA 之研究," 國立臺灣大學化學工程學系學位論文, pp. 1-79, 2018. 郭朝琛, "以布朗動態法模擬由正向應力驅動 DNA 電泳分離," 國立臺灣大學化學工程學系學位論文, vol. 2019, pp. 1-150, 2019. K. D. Dorfman, S. B. King, D. W. Olson, J. D. Thomas, and D. R. Tree, "Beyond gel electrophoresis: Microfluidic separations, fluorescence burst analysis, and DNA stretching," Chemical reviews, vol. 113, no. 4, pp. 2584-2667, 2013. 陳冠綸, "以布朗動態法模擬線形與環形DNA於微流道中之電泳分離," 化學工程學研究所, 國立臺灣大學, 2021年, 2021. J. M. Kim and P. S. Doyle, "A Brownian dynamics-finite element method for simulating DNA electrophoresis in nonhomogeneous electric fields," Journal of Chemical Physics, vol. 125, no. 7, Aug 2006, Art no. 074906, doi: 10.1063/1.2222374. M. Toda et al., Statistical Physics II: Nonequilibrium Statistical Mechanics. Springer Berlin Heidelberg, 2012. P. Grassia and E. J. Hinch, "Computer simulations of polymer chain relaxation via Brownian motion," Journal of Fluid Mechanics, vol. 308, pp. 255-288, Feb 1996, doi: 10.1017/s0022112096001474. J. F. Marko and E. D. Siggia, "Stretching DNA," Macromolecules, vol. 28, no. 26, pp. 8759-8770, Dec 1995, doi: 10.1021/ma00130a008. R. M. Jendrejack, J. J. de Pablo, and M. D. Graham, "Stochastic simulations of DNA in flow: Dynamics and the effects of hydrodynamic interactions," Journal of Chemical Physics, vol. 116, no. 17, pp. 7752-7759, May 2002, doi: 10.1063/1.1466831. D. M. Heyes and J. R. Melrose, "Brownian dynamics simulations of model hard-sphere suspensions," Journal of Non-Newtonian Fluid Mechanics, vol. 46, no. 1, pp. 1-28, Jan 1993, doi: 10.1016/0377-0257(93)80001-r. J. M. Kim and P. S. Doyle, "A Brownian dynamics-finite element method for simulating DNA electrophoresis in nonhomogeneous electric fields," The Journal of chemical physics, vol. 125, no. 7, 2006. L. J. Segerlind, Applied finite element analysis. John Wiley & Sons, 1991. C.-C. Hsieh and T.-H. Lin, "Simulation of conformational preconditioning strategies for electrophoretic stretching of DNA in a microcontraction," Biomicrofluidics, vol. 5, no. 4, 2011. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98753 | - |
| dc.description.abstract | 在生物醫學與分子分析領域中,依據DNA片段長度進行高效率分離是基因定序、疾病檢測與微生物分型等技術的基礎。傳統的脈衝場凝膠電泳(PFGE)雖可處理大型DNA片段,但操作耗時,且裝置系統不易擴展。相較之下,微流道DNA分離技術因具快速、便利與低成本等優勢,近年來被視為具高度潛力的替代方案。目前主流微流道設計多以障礙物(如圓柱結構)誘發DNA碰撞來實現尺寸篩選,但在提升電場強度以加快分離速度時,DNA往往無足夠時間恢復至鬆弛態,導致碰撞效果降低並產生穿隧效應。為克服此限制,本研究提出以DNA流變性質為基礎的正向應力(normal stress)分離策略。
當 DNA 處於拉伸且彎曲構型時,內部產生的彈性回復力即為正向應力,會使分子朝向曲率中心位移。由於長鏈 DNA 受正向應力影響更為顯著,偏移量亦較短鏈更大,達成長短DNA分離。然而,僅以偏移量作為分離依據,效果易受擴散作用削弱。因此,本研究轉而以正向應力影響 DNA 電泳速度作為分離策略,也就是利用DNA 受正向力作用後,偏移至電場強度不同之區域,進而產生電泳速度差異,最終實現分離效果。根據此策略,本研究設計具 Y 型結構之微流道,驅動正向應力使DNA產生偏移,並透過流道結構影響電場,放大電場強度差異,進而增強 DNA 電泳速差。本研究之微流道長度為1mm,內含20排Y 型結構,DNA每次通過Y 型結構所造成的速度變化將累積於時間維度,最終形成顯著通過時間差異。考量 Y 型結構排列對電場分佈之影響,亦比較交錯型與平行型兩種排列對分離行為之影響。 本研究以布朗動態法(Brownian Dynamics)模擬 DNA 於微流道中運動,驗證此分離策略之可行性。模擬結果顯示,透過黛博拉數(Deborah number, De)評估 DNA 在不同操作條件下所受正向應力之相對強度,能有效預測分離效果隨電場變化之趨勢。此外,影響 DNA 電泳速度的主要因素包括:(1)電場強度分佈、(2)電力線走向,以及 (3) DNA 在 y 方向的初始位置。其中,電場強度分佈決定DNA偏移量與速度之關係,並證實速度差異主要來自正向應力所致。電力線走向則影響 DNA 受正向力作用之規律性,交錯型裝置中,電力線走向可能導引 DNA快速穿越 Y 型結構,減少受正向力影響的機會。而平行型裝置雖無電力線走向問題,但 DNA 於 y 方向初始分佈差異,仍可能引發穿隧效應,削弱分離效果。 為解決穿隧效應問題,本研究在原有平行型裝置之入口處引入檔板結構,有效阻斷穿隧路徑,並顯著提升分離表現。優化後結果指出,僅長度為1 mm的檔板型裝置,即可達到與15 mm圓柱障礙陣列相近之分離效能。未來若能整合DNA於y方向聚焦的技術,將可進一步發揮本設計之潛力。本研究針對正向應力分離機制提出具體之微流道結構與電場設計方向,為實驗裝置開發提供理論依據與設計構想。 | zh_TW |
| dc.description.abstract | In the fields of biomedicine and molecular analysis, efficient separation of DNA fragments based on their length forms the foundation for technologies such as gene sequencing, disease diagnosis, and microbial typing. Although conventional pulsed-field gel electrophoresis (PFGE) is capable of handling large DNA fragments, it is time-consuming and difficult to scale. In contrast, microfluidic DNA separation technologies have emerged as promising alternatives in recent years, offering advantages such as speed, convenience, and low cost. Most existing microchannel designs achieve size-based separation by inducing DNA collisions through obstacles (e.g., cylindrical posts). However, under high electric field strength aimed at accelerating separation, DNA often lacks sufficient time to relax to its equilibrium state, resulting in reduced collision efficiency and tunneling effects. To overcome this limitation, this study proposes a separation strategy based on the rheological properties of DNA, specifically utilizing normal stress.
When DNA is in a stretched and curved conformation, the internal elastic restoring force generates normal stress, driving the molecule toward the center of curvature. Longer DNA chains experience more significant normal stress effects, resulting in greater lateral displacement compared to shorter chains, thus enabling size-based separation. However, relying solely on displacement for separation is susceptible to diffusion effects. Therefore, this study adopts a strategy based on differences in electrophoretic velocity induced by normal stress. Under the influence of normal stress, DNA is displaced into regions of varying electric field strength, leading to differences in electrophoretic velocity and ultimately achieving separation. Based on this principle, a microchannel with Y-shaped structures is designed to induce lateral migration through normal stress and to amplify electric field strength differences through channel geometry, thereby enhancing velocity differences between DNA molecules. The microchannel used in this study is 1 mm in length and contains 20 rows of Y-shaped structures. The velocity changes induced each time DNA passes through a Y-shaped structure accumulate over time, ultimately leading to significant differences in passage time. Considering the influence of Y-structure arrangement on electric field distribution, this study further compares the separation behavior between staggered and parallel configurations. Brownian Dynamics simulations are employed to verify the feasibility of this separation strategy by analyzing DNA migration within the microchannel. The simulation results demonstrate that evaluating the relative magnitude of normal stress acting on DNA under different operating conditions through the Deborah number (De) effectively predicts the trend of separation performance with varying electric fields. Moreover, the primary factors influencing DNA electrophoretic velocity include: (1) electric field strength distribution, (2) direction of electric field lines, and (3) the initial y-direction position of DNA. Among these, the electric field strength distribution determines the relationship between lateral displacement and velocity and confirms that velocity differences primarily arise from normal stress. The direction of electric field lines affects the regularity of DNA experiencing normal stress; in staggered configurations, the electric field lines may guide DNA to pass rapidly through Y-shaped structures, reducing opportunities for normal stress effects. In contrast, parallel configurations do not exhibit issues related to field line direction; however, initial distribution differences in the y-direction may still induce tunneling effects, weakening separation performance. To address the tunneling issue, this study introduces a baffle structure at the entrance of the parallel configuration to effectively block tunneling pathways, thereby significantly enhancing separation performance. The optimized results indicate that a baffle structure with a length of only 1 mm can achieve separation efficiency comparable to that of a 15 mm cylindrical post array. Further integration with y-direction focusing techniques could potentially maximize the performance of this design. This study provides concrete microchannel structures and electric field design strategies based on the normal stress separation mechanism, offering theoretical guidance and design concepts for future experimental device development. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-08-18T16:21:25Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-08-18T16:21:25Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 誌謝 i
摘要 ii Abstract iv 目次 vi 圖次 ix 表次 xvi 第1章 緒論 1 1.1 前言 1 1.2 研究動機與目的 1 第2章 文獻回顧 2 2.1 DNA的性質 2 2.1.1 去氧核糖核苷酸 ( DNA ) 2 2.1.2 輪廓長度 ( Contour Length ) 3 2.1.3 堅韌長度 ( Persistence Length ) 3 2.1.4 鬆弛時間(Relaxation time) 3 2.2 以高分子模型模擬DNA力學行為 4 2.2.1 理想鏈 ( Ideal Chain ) 5 2.2.2 真實鏈 ( Real Chain ) 5 2.2.2.1 體積排斥效應 ( Excluded Volume Effect ) 6 2.2.2.2 長程與短程交互作用 6 2.3 線性高分子模型 7 2.3.1 Bead-Stick Model 8 2.3.2 Bead-Spring Model 9 2.4 DNA受到電場之效應 9 2.4.1 DNA電泳機制(Electrophoresis of DNA) 9 2.4.2 微流道內之電滲流效應 10 2.4.3 高電場下之自纏繞效應 11 2.5 分離DNA之文獻回顧 12 2.5.1 傳統凝膠法 ( Gel Electrophoresis ) 12 2.5.2 脈衝式凝膠電泳 ( Pulsed Field Gel Electrophoresis, PFGE ) 13 2.5.3 圓柱障礙物陣列(Post Array) 15 2.5.4 確定性橫向位移(Deterministic Lateral Displacement, DLD) 19 2.5.5 徑向偏移(Radial Migration) 20 2.5.6 漸縮-漸擴型微流道以正向應力分離DNA [36] 24 2.5.7 DNA於微流道電泳之相關參數 27 2.5.7.1 電泳遷移率(Electricphoretic mobility) 27 2.5.7.2 分離解析度(Separation resolution) 28 2.5.7.3 匹列數(Péclet number, Pe) 29 2.5.7.4 黛博拉數(Deborah number, De) 30 2.6 以正向力影響電泳速度之DNA分離策略 31 第3章 模擬方法 37 3.1 布朗動態法(Brownian Dynamics, BD) 37 3.1.1 布朗力(Brownian Force) 38 3.1.2 彈簧力[4, 43] 39 3.1.3 體積排斥力[4, 44] 40 3.1.4 通道牆壁之體積排斥力 40 3.1.5 無因次化 41 3.2 有限元素法(Finite Element Method, FEM) 42 3.2.1 通道中的電場計算[46, 47] 42 3.3 有限元素法結合布朗動態法 45 3.4 本研究之流程 47 3.5 模擬參數設定 48 3.5.1 時間步階 48 3.5.2 參數設定 48 3.6 DNA結果分析 50 3.6.1 DNA移動行為之分析 50 3.6.2 DNA通過單個障礙物之特徵分析 51 第4章 結果與討論 53 4.1 含Y字結構微流道電場分析與DNA分離結果 53 4.1.1 含 Y 字結構之電場分佈與Deborah 數分析 53 4.1.2 DNA 於通道中之遷移路徑與平均電泳速率分析 56 4.1.2.1 交錯排列結構之DNA平均遷移表現 56 4.1.2.2 平行排列結構之DNA平均遷移表現 59 4.1.3 分離解析度與 Deborah 數預測模型之對照 61 4.2 DNA 動態行為與分離機制分析 63 4.2.1 DNA 通過時間分布與異質性行為辨識 63 4.2.2 電泳路徑分布與運動行為關聯性分析 66 4.2.2.1 交錯型裝置之電泳路徑分析 66 4.2.2.2 平行型裝置之電泳路徑分析 71 4.3 微流道結構效能分析與裝置優化 75 4.3.1 交錯排列結構之DNA路徑限制 75 4.3.2 平行排列結構之優化策略 76 4.3.3 擋板型改良裝置與分離能力驗證 78 第5章 結論與未來展望 83 第6章 參考文獻 85 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 電泳分離 | zh_TW |
| dc.subject | 布朗動態法 | zh_TW |
| dc.subject | DNA | zh_TW |
| dc.subject | 正向應力 | zh_TW |
| dc.subject | 微流道 | zh_TW |
| dc.subject | electrophoretic separation | en |
| dc.subject | microfluidics | en |
| dc.subject | normal stress | en |
| dc.subject | DNA | en |
| dc.subject | Brownian dynamics | en |
| dc.title | 以布朗動態法研究DNA受正向力影響產生電泳速差之分離策略 | zh_TW |
| dc.title | Brownian Dynamics Simulation of DNA Separation by Normal Stress Induced Electrophoretic Velocity Differences | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 黃振煌;趙玲 | zh_TW |
| dc.contributor.oralexamcommittee | Jen-Huang Huang;Ling Chao | en |
| dc.subject.keyword | 布朗動態法,電泳分離,微流道,正向應力,DNA, | zh_TW |
| dc.subject.keyword | Brownian dynamics,DNA,electrophoretic separation,microfluidics,normal stress, | en |
| dc.relation.page | 87 | - |
| dc.identifier.doi | 10.6342/NTU202503563 | - |
| dc.rights.note | 未授權 | - |
| dc.date.accepted | 2025-08-10 | - |
| dc.contributor.author-college | 工學院 | - |
| dc.contributor.author-dept | 化學工程學系 | - |
| dc.date.embargo-lift | N/A | - |
| 顯示於系所單位: | 化學工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-2.pdf 未授權公開取用 | 5.77 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
