請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98747完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 李雨 | zh_TW |
| dc.contributor.advisor | U Lei | en |
| dc.contributor.author | 彭志麟 | zh_TW |
| dc.contributor.author | Chih-Lin Peng | en |
| dc.date.accessioned | 2025-08-18T16:19:57Z | - |
| dc.date.available | 2025-08-19 | - |
| dc.date.copyright | 2025-08-18 | - |
| dc.date.issued | 2025 | - |
| dc.date.submitted | 2025-08-08 | - |
| dc.identifier.citation | Ramsay, J., Simmons, M. J. H., Ingram, A., & Stitt, E. H. (2016). Mixing performance of viscoelastic fluids in a Kenics KM in-line static mixer. Chemical Engineering Research and Design, 115, 310–324.
Thakur, R. K., Vial, C., Nigam, K. D. P., Nauman, E. B., & Djelveh, G. (2003). Static mixers in the process industries—a review. Chemical Engineering Research and Design, 81(7), 787–826. Ghanem, A., Lemenand, T., Della Valle, D., & Peerhossaini, H. (2014). Static mixers: Mechanisms, applications, and characterization methods – A review. Chemical Engineering Research and Design, 92(2), 205–228. Goldshmid, J., Samet, M., & Wagner, M. (1986). Turbulent mixing at high dilution ratio in a Sulzer-Koch static mixer. Industrial & Engineering Chemistry Process Design and Development, 25(1), 108–116. Baker, J. R. (1991). Motionless mixers stir up new uses. Chemical Engineering Progress, 87(6), 32–38. Bird, R. B. (2002). “Transport phenomena.” Applied Mechanics Reviews, 55(1), R1–R4. Bird, R. B., Armstrong, R. C., & Hassager, O. (1987). Dynamics of Polymeric Liquids, Volume 1: Fluid Mechanics (2nd ed.). John Wiley & Sons. Weissenberg, K. (1947) A continuum theory of rheological phenomena. Nature, 159, 310–311. David, F. J. (1966). Open channel siphon with viscoelastic fluids. Nature, 212, 754–756. Kaye, A. (1963). A Bouncing Liquid Stream. Nature, 197, 1001–1002. Bird, R. B., Curtiss, C. F., Armstrong, R. C., & Hassager, O. (1987). Dynamics of Polymeric Liquids, Volume 2: Kinetic Theory (2nd ed.). John Wiley & Sons. Yuan, C. et al. (2020). Nonlinear effects of viscoelastic fluid flows and applications in microfluidics: A review. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 234(22), 4390–4414. Liu, S., Hrymak, A. N., & Wood, P. E. (2006). Laminar mixing of shear thinning fluids in a SMX static mixer. Chemical Engineering Science, 61(6), 1753–1759. Hirschberg, S., Koubek, R., Moser, F., & Schöck, J. (2009). An improvement of the Sulzer SMX™ static mixer significantly reducing the pressure drop. Chemical Engineering Research and Design, 87(4), 524–532. Singh, M. K., Anderson, P. D., & Meijer, H. E. H. (2009). Understanding and optimizing the SMX static mixer. Macromolecular Rapid Communications, 30(4–5), 362–376. Meijer, H. E. H., Singh, M. K., & Anderson, P. D. (2012). On the performance of static mixers: A quantitative comparison. Progress in Polymer Science, 37(10), 1333–1349. Mihailova, O., O'Sullivan, D., Ingram, A., & Bakalis, S. (2016). Velocity field characterization of Newtonian and non-Newtonian fluids in SMX mixers using PEPT. Chemical Engineering Research and Design, 108, 126–138. Zhang, M., Cui, Y., Cai, W., Wu, Z., Li, Y., Li, F., & Zhang, W. (2018). High mixing efficiency by modulating inlet frequency of viscoelastic fluid in simplified pore structure. Processes, 6(11), 210. Michael, V., Dawson, M., Prosser, R., & Kowalski, A. (2022). Laminar flow and pressure drop of complex fluids in a Sulzer SMX+TM static mixer. Chemical Engineering Research and Design, 182, 157–171. 白翊宏. (2021). 靜態混合器內混合現象的數值研究.臺灣大學應用力學研究所學位論文, 2021, 1-67. 賴泓翰. (2022). 互溶/不互溶流體於靜態混合器中混合的數值研究.臺灣大學應用力學研究所學位論文, 2022, 1-62. 賴冠廷. (2023). 突縮流道內稀彈流體混合的數值研究.臺灣大學應用力學研究所學位論文, 2023, 1-73. 廖禹喨. (2024). 黏彈流體於靜態混合器中的數值研究.臺灣大學應用力學研究所學位論文, 2023, 1-67 COMSOL Multiphysics. CFD Module User’s Guide. 2024; Available From:https://doc.comsol.com/6.2/doc/com.comsol.help.cfd/CFDModuleUsersGuide.pdf COMSOL Multiphysics. Polymer Flow Module User’s Guide. 2024; Available From:https://doc.comsol.com/6.2/doc/com.comsol.help.polymer/PolymerFlowModuleUsersGuide.pdf COMSOL Multiphysics. Mixer Module User’s Guide. 2024; Available From:https://doc.comsol.com/6.2/doc/com.comsol.help.mixer/MixerModuleUsersGuide.pdf Gan, H. Y., Lam, Y. C., & Nguyen, N. T. (2006). Polymer-based device for efficient mixing of viscoelastic fluids. Applied Physics Letters, 88(22),224103. Gan, H. Y., Lam, Y. C., Nguyen, N. T., Tam, K. C., & Yang, C. (2007). Efficient mixing of viscoelastic fluids in a microchannel at low Reynolds number. Microfluidics and Nanofluidics, 3, 101–108. Lim, V., Hobby, A. M., McCarthy, M. J., & McCarthy, K. L. (2015). Laminar mixing of miscible fluids in a SMX mixer evaluated by magnetic resonance imaging (MRI). Chemical Engineering Science, 137, 1024–1033. Migliozzi, S., Mazzei, L., & Angeli, P. (2021). Viscoelastic flow instabilities in static mixers: Onset and effect on the mixing efficiency. Physics of Fluids, 33(1). Ehrfeld, R. A., Hessel, V., Löwe, H., & Schönfeld, F. (2008). Static mixer for mixing at least two fluid flows (U.S. Patent No. 7,325,970). U.S. Patent and Trademark Office. Takamura, K., Fischer, H., & Morrow, N. R. (2012). Physical properties of aqueous glycerol solutions. Journal of Petroleum Science and Engineering, 98–99, 50–60. Yasuda, K. Y., Armstrong, R. C., & Cohen, R. E. (1981). Shear flow properties of concentrated solutions of linear and star branched polystyrenes. Rheologica Acta, 20(2), 163–178. Giesekus, H. (1982). A simple constitutive equation for polymer fluids based on the concept of deformation-dependent tensorial mobility. Journal of Non-Newtonian Fluid Mechanics, 11(1-2), 69–109. Benchabane, A., & Bekkour, K. (2008). Rheological properties of carboxymethyl cellulose (CMC) solutions. Colloid and Polymer Science, 286(10), 1173–1180. https://doi.org/10.1007/s00396-008-1882-2 Tian, X., Xiao, Y., Zhou, P., Zhang, W., Chu, Z., & Zheng, W. (2015). Study on the mixing performance of static mixers in selective catalytic reduction (SCR) systems. Journal of Marine Engineering & Technology, 14(2), 57–60. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98747 | - |
| dc.description.abstract | 本研究透過COMSOL Multiphysics 進行流體力學與質量傳輸的數值模擬,以探討SMX靜態混合器在不同的幾何結構和流體條件下之變異係數 (Coefficient of Variation, 以CoV表示)與壓降(Δp),作為評估混合器性能之依據;CoV和Δp愈低者,混合器性能愈佳。SMX混合器元件由有規則相互交錯的橫桿組成,其中沿主流方向有Np支橫桿,橫跨主流方向有Nx支橫桿。本研究以矩形截面混合器流道為設計核心,系統性地分析Np和Nx之變化對混合器性能之影響。
本文首先以水為工作流體、並選定文獻及工業上常使用的(Np=3、Nx=8)結構進行探討,以比較圓形與方形截面流道對混合器性能造成的差異。結果顯示雖然方形截面者CoV值略高於圓形截面者,但其Δp也較低。如將方形截面者增加橫桿數至Nx=10,其CoV值及Δp均低於圓形截面者,此一結果展現方形截面混合器的潛力。為了減低壓降,本文引入文獻中在橫桿間加入空隙的設計、並就幾何參數Gr(定義為空隙與橫桿寬度間的比值)進行計算分析,結果顯示適度的空隙(約Gr≈0.1)會同時減少Δp和CoV值,而增強混合器性能。 本文亦模擬不同黏度的流體(水和甘油混合液,黏度由0.001~1.412Pa·s)在方形截面混合器(Np=3、Nx=10)的混合表現,發現黏度上升會造成CoV與Δp均上升;混合器中橫桿的數目須隨著黏度提升而減少、才能達至較佳的混合,表現出幾何與流體間存在著互相耦合的關係。此外,本研究也針對非牛頓流體(1% CMC溶液)進行分析,發現對於方形截面的SMX混合器,其內橫桿數目Np和Nx的優化選擇符合文獻中所提出的設計公式。最後,本研究引入突縮管結構於方形截面SMX混合器中,透過計算發現引入突縮管結構之整體效益不佳。 本研究提出了矩形截面SMX靜態混合器幾何結構在不同條件下之設計建議與應用潛力,期望可作為靜態混合器設計優化之參考。 | zh_TW |
| dc.description.abstract | Numerical simulations of fluid dynamics and mass transport inside, SMX static mixers were performed under various geometric configurations for different fluids using COMSOL Multiphysics, for accessing the mixer performance via the Coefficient of Variation (CoV) and pressure drop across the mixer (Δp), with lower CoV and Δp indicating better performance. The SMX mixer elements are composed of regularly interlaced crossing bars, with Np bars aligned along the main flow direction and Nx bars spanning across it. This study focuses on mixer with rectangular cross-section, and systematically investigates the influence of varying Np and Nx on mixer performance. First, a commonly structure in literature and industry (Np=3、Nx=8) was employed, using water as the working fluid, for studying the performance differences between circular and square cross-sections of the mixers. Results show that although the square cross-section exhibits slightly higher CoV, it also results in a lower Δp. By increasing the number of crossbars to (Np=3、Nx=10) in the square mixer, both CoV and Δp become lower than those of the circular counterpart with (Np=3、Nx=10), demonstrating the potential of using square mixer. To further reduce the pressure drop, a gap is introduced between the bars as suggested in the literature, and the geometric parameter Gr (defined as the ratio of the gap width to the bar width) is analyzed. The results indicate that a small gap size (approximately Gr≈0.1) could simultaneously reduce both CoV and Δp, enhancing the mixer performance. The mixing performance of fluids with different viscosities (water-glycerol mixtures with viscosities ranging from 0.001 to 1.412 Pa·s) was also studied in the square mixer with (Np=3、Nx=10). It is found that, both CoV and Δp increase. To achieve better mixing, the number of crossbars should be reduced with increasing viscosity, revealing a coupled relationship between mixer geometry and fluid properties. Additionally, simulations of a non-Newtonian fluid (1% CMC solution) show that the optimal selection of Np and Nx for square-section SMX mixers is consistent with design formulas proposed in the literature. Finally, the introduction of sudden contraction structures into the square SMX mixer was explored, but the result showed that the overall mixer performance was reduced due to a large increase in pressure-drop.
This study provides some guidelines for the design of static SMX mixers, and highlights the application potential of mixers with rectangular cross-sections. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-08-18T16:19:57Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2025-08-18T16:19:57Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 序言 i
中文摘要 ii ABSTRACT iii 目次 iv 圖次 vi 表次 xiii 符號說明 xiv 第一章 緒論 1 1.1 簡介-靜態混合器 1 1.2 簡介-黏彈流體 3 1.3 文獻回顧 4 1.4 研究動機 8 第二章 理論模型 10 2.1 物理模型與基本假設 10 2.1.1 SMX靜態混合器 10 2.1.2 SMX SQUARE PLUS混合器 13 2.1.3 SMX SQUARE + SCT 15 2.1.4 基本假設 17 2.2 流體性質 17 2.2.1 甘油水溶液 17 2.2.2 流體模型 19 2.3 統御方程式 21 2.3.1 內部流場 21 2.3.2 稀薄質傳法 23 2.3.3 混合指標 25 2.4 初始條件與邊界條件 26 2.5 COMSOL Multiphysics計算軟體 27 第三章 結果與討論 30 3.1 網格設定 31 3.2 SMX幾何結構對混合性能之影響 36 3.2.1 不同截面形狀之參數設計 37 3.2.2 幾何複雜度分析 40 3.2.3 SMX PLUS – 在橫桿間引入間隙的設計 43 3.2.4 SMX PLUS應用於圓形截面SMX靜態混合器 50 3.2.5 不同混合元件數量之參數設計 54 3.3 不同流體黏度對矩形截面混合器混合效果的影響 58 3.3.1 固定幾何結構條件下不同流體黏度之混合分析 58 3.3.2 幾何複雜度分析 60 3.3.3 圓形截面幾何結構之幾何複雜度分析 62 3.4 非牛頓流體分析 63 3.4.1 矩形截面混合器在非牛頓流體條件下之分析 64 3.4.2 針對表現最佳及最差之結構進行流場分析 66 3.5 突縮管對混合效率的影響 69 3.5.1 不同突縮比之影響 70 3.5.2 不同突縮管排列方式 72 第四章 結論與未來展望 76 參考文獻 77 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | SMX靜態混合器 | zh_TW |
| dc.subject | 幾何設計 | zh_TW |
| dc.subject | 變異係數 | zh_TW |
| dc.subject | 壓降 | zh_TW |
| dc.subject | 矩形截面 | zh_TW |
| dc.subject | rectangular cross-section | en |
| dc.subject | coefficient of variation | en |
| dc.subject | pressure drop | en |
| dc.subject | SMX static mixer | en |
| dc.subject | geometric design | en |
| dc.title | 靜態混合器中幾何結構對混合效率之影響 | zh_TW |
| dc.title | Effect of the Geometric Structure on Mixing Efficiency of Static Mixers | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 113-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 雷顯宇;田華忠 | zh_TW |
| dc.contributor.oralexamcommittee | Xian-Yu Lei;Hua-Zhong Tien | en |
| dc.subject.keyword | SMX靜態混合器,矩形截面,幾何設計,變異係數,壓降, | zh_TW |
| dc.subject.keyword | SMX static mixer,rectangular cross-section,geometric design,coefficient of variation,pressure drop, | en |
| dc.relation.page | 80 | - |
| dc.identifier.doi | 10.6342/NTU202503801 | - |
| dc.rights.note | 同意授權(全球公開) | - |
| dc.date.accepted | 2025-08-12 | - |
| dc.contributor.author-college | 工學院 | - |
| dc.contributor.author-dept | 應用力學研究所 | - |
| dc.date.embargo-lift | 2025-08-19 | - |
| 顯示於系所單位: | 應用力學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-113-2.pdf | 6.23 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
