Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 電機工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98746
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor王勝德zh_TW
dc.contributor.advisorSheng-De Wangen
dc.contributor.author戴廷磬zh_TW
dc.contributor.authorTing-Ching Taien
dc.date.accessioned2025-08-18T16:19:43Z-
dc.date.available2025-08-19-
dc.date.copyright2025-08-18-
dc.date.issued2025-
dc.date.submitted2025-08-07-
dc.identifier.citation[1] Y.Liuet al.,“Itransformer: Inverted transformers are effective for time series forecasting,” arXiv preprint arXiv:2310.06625, 2023.
[2] Y. Nie, N. H. Nguyen, P. Sinthong, and J. Kalagnanam, “A time series is worth 64 words:Long-term forecasting with transformers,”arXivpreprintarXiv:2211.14730,2022.
[3] Y. Zhang and J. Yan, “Crossformer: Transformer utilizing cross-dimension dependency for multivariate time series forecasting,” in The eleventh international conference on learning representations, 2023.
[4] T. Zhou, Z. Ma, Q. Wen, X. Wang, L. Sun, and R. Jin, “Fedformer: Frequency enhanced decomposed transformer for long-term series forecasting,” in International conference on machine learning, PMLR, 2022, pp. 27268–27286.
[5] Y.Liu, H. Wu,J. Wang, and M.Long, “Non-stationary transformers: Exploring the stationarity in time series forecasting,” Advances in neural information processing systems, vol. 35, pp. 9881–9893, 2022.
[6] V. Ashish, “Attention is all you need,” Advances in neural information processing systems, vol. 30, p. I, 2017.
[7] C. Challu, K. G. Olivares, B. N. Oreshkin, F. G. Ramirez, M. M. Canseco, and A. Dubrawski, “Nhits: Neural hierarchical interpolation for time series forecasting,” in Proceedings of the AAAI conference on artificial intelligence, vol. 37, 2023,pp. 6989–6997.
[8] A.Das, W.Kong,A.Leach, S. Mathur, R. Sen, and R. Yu, “Long-term forecasting with tide: Time-series dense encoder,” arXiv preprint arXiv:2304.08424, 2023.
[9] P. Tang and W. Zhang, “Pdmlp: Patch-based decomposed mlp for long-term time series forecasting,” arXiv preprint arXiv:2405.13575, 2024.
[10] S. Wang et al., “Timemixer: Decomposable multiscale mixing for time series forecasting,” arXiv preprint arXiv:2405.14616, 2024.
[11] S.-A. Chen, C.-L. Li, N. Yoder, S. O. Arik, and T. Pfister, “Tsmixer: An all-mlp architecture for time series forecasting,” arXiv preprint arXiv:2303.06053, 2023.
[12] G.Woo,C.Liu,D.Sahoo,A.Kumar,andS.Hoi,“Etsformer:Exponential smoothing transformers for time-series forecasting,”arXiv preprint arXiv:2202.01381,2022.
[13] B.N.Oreshkin,D.Carpov,N.Chapados,andY.Bengio,“N-beats:Neural basis expansion analysis for interpretable time series forecasting,”arXiv preprint arXiv:1905.10437,2019.
[14] D. Salinas, V. Flunkert, J. Gasthaus, and T. Januschowski, “Deepar: Probabilistic forecasting with autoregressive recurrent networks,” International journal of forecasting, vol. 36, no. 3, pp. 1181–1191, 2020.
[15] J. G. Zilly, R. K. Srivastava, J. Koutnık, and J. Schmidhuber, “Recurrent highway networks,” in International conference on machine learning, PMLR, 2017,pp. 4189–4198.
[16] G. Lai, W.-C. Chang, Y. Yang, and H. Liu, “Modeling long-and short-term temporal patterns with deep neural networks,” in The 41st international ACM SIGIR conference on research & development in information retrieval, 2018, pp. 95–104.
[17] I.O.Tolstikhin et al., “Mlp-mixer: An all-mlp architecture for vision,” Advances in neural information processing systems, vol. 34, pp. 24261–24272, 2021.
[18] A. Dosovitskiy et al., “An image is worth 16x16 words: Transformers for image recognition at scale,” arXiv preprint arXiv:2010.11929, 2020.
[19] Z.Gong,Y.Tang,andJ.Liang,“Patchmixer:A patch-mixing architecture for long term time series forecasting,” arXiv preprint arXiv:2310.00655, 2023.
[20] K.Yietal.,“Frequency-domain mlps are more effective learners in time series forecasting,” Advances in Neural Information Processing Systems, vol. 36, pp. 7665676679, 2023.
[21] Y.Zhang, X. Zhou, Y. Zhang, S. Li, and S. Liu, “Improving time series forecasting in frequency domain using a multi resolution dual branch mixer with noise insensitive arctanloss,” Scientific Reports, vol. 15, no. 1, p. 12557, 2025.
[22] H. Zhou et al., “Informer: Beyond efficient transformer for long sequence time series forecasting,” in Proceedings of the AAAI conference on artificial intelligence,vol. 35, 2021, pp. 11106–11115.
[23] H. Wu, J. Xu, J. Wang, and M. Long, “Autoformer: Decomposition transformers with auto-correlation for long-term series forecasting,” Advances in neural information processing systems, vol. 34, pp. 22419–22430, 2021.
[24] H. Wu, T. Hu, Y. Liu, H. Zhou, J. Wang, and M. Long, “Timesnet: Temporal 2d variation modeling for general time series analysis,”arXiv preprint arXiv:2210.02186,2022.
[25] M.Liu et al., “Scinet: Time series modeling and forecasting with sample convolution and interaction,” Advances in Neural Information Processing Systems, vol. 35,pp. 5816–5828, 2022.
[26] M.M.N.Murad,M.Aktukmak,andY.Yilmaz,“Wpmixer:Efficient multi-resolution mixing for long-term time series forecasting,” in Proceedings of the AAAI Conference on Artificial Intelligence, vol. 39, 2025, pp. 19581–19588.
[27] Z. Li et al., “Fourier neural operator for parametric partial differential equations,”arXiv preprint arXiv:2010.08895, 2020.
[28] M. Li and Z. Zhu, “Spatial-temporal fusion graph neural networks for traffic flow forecasting,” in Proceedings of the AAAI conference on artificial intelligence,vol.35,2021, pp. 4189–4196.
[29] J. Hu, L. Shen, and G. Sun, “Squeeze-and-excitation networks,” in Proceedings of the IEEE conference on computer vision and pattern recognition, 2018, pp. 7132-7141.
[30] Y. Hu, P. Liu, P. Zhu, D. Cheng, and T. Dai, “Adaptive multi-scale decomposition framework for time series forecasting,” in Proceedings of the AAAI Conference on Artificial Intelligence, vol. 39, 2025, pp. 17359–17367.
[31] P. Tang and W. Zhang, “Unlocking the power of patch: Patch-based mlp for long term time series forecasting,” in Proceedings of the AAAI Conference on Artificial Intelligence, vol. 39, 2025, pp. 12640–12648.
[32] Z. Li, S. Qi, Y. Li, and Z. Xu, “Revisiting long-term time series forecasting: An investigation on linear mapping,” arXiv preprint arXiv:2305.10721, 2023.
[33] A. Zeng, M. Chen, L. Zhang, and Q. Xu, “Are transformers effective for time series forecasting?” In Proceedings of the AAAI conference on artificial intelligence,vol. 37, 2023, pp. 11121–11128.
[34] L. Han, X.-Y. Chen, H.-J. Ye, and D.-C. Zhan, “Softs: Efficient multivariate time series forecasting with series-core fusion,” Advances in Neural Information Processing Systems, vol. 37, pp. 64145–64175, 2024.
[35] D. Campos, M. Zhang, B. Yang, T. Kieu, C. Guo, and C. S. Jensen, “Lightts:Lightweight time series classification with adaptive ensemble distillation,” Proceedings of the ACM on Management of Data, vol. 1, no. 2, pp. 1–27, 2023.
[36] S.Liuetal., “Pyraformer: Low-complexity pyramidal attention for long-range time series modeling and forecasting,”in#PLACEHOLDER_PARENT_METADATA_VALUE#,2022.
[37] S. Li et al., “Enhancing the locality and breaking the memory bottleneck of transformer on time series forecasting,” Advances in neural information processing systems, vol. 32, 2019.
[38] N. Kitaev, Ł. Kaiser, and A. Levskaya, “Reformer: The efficient transformer,”arXiv preprint arXiv:2001.04451, 2020.
[39] Z. Li, Z. Rao, L. Pan, and Z. Xu, “Mts-mixers: Multivariate time series forecasting via factorized temporal and channel mixing,” arXiv preprint arXiv:2302.04501,2023.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98746-
dc.description.abstract準確預測多變量時間序列對於工業應用至關重要,然而,由於數據中固有的短期瞬態變化、長期相依性、隱藏的週期性,以及嚴格的計算效率要求,這項任務充滿挑戰。為了解決這些問題,我們提出了AMTF-MLP,一個創新的純多層感知器(MLP)架構,它透過自適應融合機制,整合了多尺度時域混合器與頻域頻譜學習。AMTF-MLP透過並行分支處理信號:一個帶有層級化區塊混合器的時域分支,用以捕捉局部與全域的時間模式;以及一個帶有頻譜MLP的頻域分支,用以建模週期性。
在多樣化的公開基準上進行的大量實驗,驗證了我們模型的有效性與通用性。在長期預測方面,AMTF-MLP展現了高度的競爭力,與iTransformer和PatchTST等主流Transformer模型相比,其均方誤差(MSE)降低了9.3%至20.4%。在高頻率的短期預測場景中,它取得了優異的成果,在PEMS數據集上,其MSE分別比AMD和iTransformer等強力競爭對手降低了24.3%和40.4%。
此模型優異的跨域性能,同時也體現在計算效率上。在其高效能的MLP同類模型中,AMTF-MLP展現了優異的記憶體用量,記憶體消耗比AMD少1.80倍,同時維持著快1.5倍的訓練速度。消融實驗證實,我們設計的每個組件都對模型
的效能至關重要。憑藉其線性複雜度與強大的實證結果,AMTF-MLP為真實世界的預測系統提供了一個強大且實用的解決方案。
zh_TW
dc.description.abstractAccurately predicting multivariate time series is essential for industrial applications, yet it poses significant challenges due to short-term transients, long-term dependencies, and hidden periodicities, alongside stringent computational efficiency requirements.To address these issues, we introduce AMTF-MLP, an innovative pure Multi-Layer Perceptron (MLP) architecture that integrates multi-scale time-domain mixers and frequency domain spectral learning, unified through adaptive fusion. AMTF-MLP processes the signal in parallel branches: a time-domain branch with hierarchical patch mixers to capture local and global temporal patterns, and a frequency-domain branch with a spectral MLP to model periodicities.
Extensive experiments on diverse public benchmarks validate our model's effectiveness and versatility. In long-term forecasting, it delivers highly competitive performance, reducing Mean Squared Error (MSE) by 9.3% to 20.4% compared to prominent Transformer models like iTransformer and PatchTST. In high-frequency short-term scenarios, it achieves leading results, reducing MSE by 24.3% and 40.4% against strong competitors like AMD and iTransformer, respectively, on the PEMS datasets. The model's excellent cross-domain performance is also reflected in its computational efficiency: among its high-performance MLP peers, it exhibits the most superior memory efficiency, consuming 1.8 × less memory than AMD, while maintaining a training speed 1.5 × faster. Ablation studies confirm that each component of our design is critical to the model’s efficacy. With its linear complexity and strong empirical results, AMTF-MLP presents a powerful and practical solution for real-world forecasting systems.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-08-18T16:19:43Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-08-18T16:19:43Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontentsVerification Letter from the Oral Examination Committee i
誌謝 iii
摘要 iv
Abstract v
Contents vii
List of Figures ix
List of Tables xi
Chapter 1 Introduction 1
1.1 Background and Motivation 1
1.2 Our Perspective 3
1.3 Proposed Approach—AMTF MLP 4
1.4 Contributions 5
Chapter 2 Related Works 7
2.1 Full-MLP Architectures and Model Simplicity 7
2.2 Patching Mechanism and Multi-Scale Time Series Modeling 9
2.3 Frequency-Domain Modeling and Noise Suppression 11
2.4 Synthesis and Research Gap 14
Chapter 3 Approach 17
3.1 Problem Definition 18
3.2 Input Embedding Layer 19
3.2.1 Input Embedding Layer 19
3.2.2 Time-Domain Embedding 21
3.2.3 Frequency-Domain Embedding 22
3.3 Multi-Scale Time-Domain Branch 22
3.3.1 Local Patch Mixer 24
3.3.2 Global Patch Mixer 25
3.3.3 Multi-Scale Feature Fusion 26
3.4 Frequency-Domain Branch 27
3.4.1 Frequency Feature Extraction(FFT+Spectral MLP) 28
3.4.2 Time Signal Reconstruction(IFFT & Time Signal Reconstruction) 29
3.4.3 Frequency Branch Output 30
3.5 Adaptive Fusion Module 30
Chapter 4 Experiments 33
4.1 Datasets and Implementation Details 33
4.2 Long-term Forecasting Results 35
4.3 Short-term Forecasting Results 37
4.4 Imputation Task Results 38
4.5 Model Efficiency During Training 40
4.6 Memory Usage During Training 41
Chapter 5 Ablation Study 43
5.1 Effect of the Multi-Scale Time-Domain Branch 43
5.2 Effect of the Frequency-Domain Branch 44
5.3 Effect of the Adaptive Fusion Mechanism 45
5.4 Ablation Study on Short-Term Forecasting 47
Chapter 6 Conclusion 49
References 51
-
dc.language.isoen-
dc.subject多變量時間序列預測zh_TW
dc.subject純多層感知器模型zh_TW
dc.subject頻域分析zh_TW
dc.subject自適應特徵融合zh_TW
dc.subject多尺度時域建模zh_TW
dc.subject長期預測zh_TW
dc.subject短期預測zh_TW
dc.subjectMLP-based Modelsen
dc.subjectShort-Term Forecastingen
dc.subjectLong-Term Forecastingen
dc.subjectMulti-Scale Temporal Modelingen
dc.subjectAdaptive Feature Fusionen
dc.subjectFrequency-Domain Analysisen
dc.subjectMultivariate Time Series Forecastingen
dc.title基於適應性多尺度時頻域多層感知器於時間序列預測之架構設計zh_TW
dc.titleAMTF-MLP: Adaptive Multi-Scale Time-Frequency MLP for Time Series Forecastingen
dc.typeThesis-
dc.date.schoolyear113-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee吳沛遠;陳永昇;雷欽隆zh_TW
dc.contributor.oralexamcommitteePei-Yuan Wu;Yeong-Sheng Chen;Chin-Laung Leien
dc.subject.keyword多變量時間序列預測,純多層感知器模型,頻域分析,自適應特徵融合,多尺度時域建模,長期預測,短期預測,zh_TW
dc.subject.keywordMultivariate Time Series Forecasting,MLP-based Models,Frequency-Domain Analysis,Adaptive Feature Fusion,Multi-Scale Temporal Modeling,Long-Term Forecasting,Short-Term Forecasting,en
dc.relation.page54-
dc.identifier.doi10.6342/NTU202503526-
dc.rights.note同意授權(限校園內公開)-
dc.date.accepted2025-08-12-
dc.contributor.author-college電機資訊學院-
dc.contributor.author-dept電機工程學系-
dc.date.embargo-lift2025-08-19-
顯示於系所單位:電機工程學系

文件中的檔案:
檔案 大小格式 
ntu-113-2.pdf
授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務)
4.92 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved