Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 機械工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98741
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor王建凱zh_TW
dc.contributor.advisorChien-Kai Wangen
dc.contributor.author楊智翔zh_TW
dc.contributor.authorJhih-Siang Yangen
dc.date.accessioned2025-08-18T16:18:28Z-
dc.date.available2025-08-19-
dc.date.copyright2025-08-18-
dc.date.issued2025-
dc.date.submitted2025-08-06-
dc.identifier.citation[1] Gay, M., Zhang, L., & Liu, W. K. (2006). Stent modeling using immersed finite element method. Computer methods in applied mechanics and engineering, 195(33-36), 4358-4370.
[2] Peskin, C. S. (2002). The immersed boundary method. Acta numerica, 11, 479-517.
[3] Peskin, C. S. (1977). Numerical analysis of blood flow in the heart. Journal of computational physics, 25(3), 220-252.
[4] Zhang, L., Gerstenberger, A., Wang, X., & Liu, W. K. (2004). Immersed finite element method. Computer Methods in Applied Mechanics and Engineering, 193(21-22), 2051-2067.
[5] Hughes, T. J., Liu, W. K., & Zimmermann, T. K. (1981). Lagrangian-Eulerian finite element formulation for incompressible viscous flows. Computer methods in applied mechanics and engineering, 29(3), 329-349.
[6] Donea, J., Huerta, A., Ponthot, J. P., & Rodríguez-Ferran, A. (2004). Arbitrary Lagrangian-Eulerian Methods. Encyclopedia of computational mechanics.
[7] Ye, T., Pan, D., Huang, C., & Liu, M. (2019). Smoothed particle hydrodynamics (SPH) for complex fluid flows: Recent developments in methodology and applications. Physics of Fluids, 31(1).
[8] Ma, X. J., Geni, M., & Jin, A. F. (2019). An algorithm for fluid-solid coupling based on SPH method and its preliminary verification. International Journal of Computational Methods, 16(02), 1846008.
[9] Kamakoti, R., & Shyy, W. (2004). Fluid-structure interaction for aeroelastic applications. Progress in Aerospace Sciences, 40(8), 535-558.
[10] Calderer, A., Guo, X., Shen, L., & Sotiropoulos, F. (2018). Fluid-structure interaction simulation of floating structures interacting with complex, large-scale ocean waves and atmospheric turbulence with application to floating offshore wind turbines. Journal of Computational Physics, 355, 144-175.
[11] Chang, Z., Liu, Z., & Zhang, Y. (2019). Fluid-structure interaction numerical simulation of bridge wind-induced vibration based on CV Newmark-β method. Journal of Highway and Transportation Research and Development (English Edition), 13(2), 28-37.
[12] Jiang, S.-C., Bai, W., & Lan, J.-J. (2022). Influence of a vertical baffle on suppressing sway motion response of a tank coupled with sloshing actions in waves. Ocean Engineering, 260, 111999.
[13] Barton, M. S., Corson, D., Quigley, J., Emami, B., & Kush, T. (2014). Tanker truck sloshing simulation using bi-directionally coupled CFD and multi-body dynamics solvers (No. 2014-01-2442). SAE Technical Paper.
[14] Liu, W. K., Liu, Y., Farrell, D., Zhang, L., Wang, X. S., Fukui, Y., Patankar, N., Zhang, Y., Bajaj, C., Lee, J., Hong, J., Chen, X., & Hsu, H. (2006). Immersed finite element method and its applications to biological systems. Computer methods in applied mechanics and engineering, 195(13-16), 1722-1749.
[15] Wang, X., Wang, C., & Zhang, L. T. (2012). Semi-implicit formulation of the immersed finite element method. Computational Mechanics, 49(4), 421-430.
[16] Wang, X., & Zhang, L. T. (2013). Modified immersed finite element method for fully-coupled fluid–structure interactions. Computer methods in applied mechanics and engineering, 267, 150-169.
[17] Zhang, L. T., & Gay, M. (2007). Immersed finite element method for fluid-structure interactions. Journal of Fluids and Structures, 23(6), 839-857.
[18] Zhao, H., Freund, J. B., & Moser, R. D. (2008). A fixed-mesh method for incompressible flow-structure systems with finite solid deformations. Journal of Computational Physics, 227(6), 3114-3140.
[19] Dunne, T. (2006). An Eulerian approach to fluid–structure interaction and goal‐oriented mesh adaptation. International journal for numerical methods in fluids, 51(9-10), 1017-1039.
[20] Wang, X., & Zhang, L. T. (2010). Interpolation functions in the immersed boundary and finite element methods. Computational Mechanics, 45(4), 321-334.
[21] Zhang, Z.-Q., Liu, G. R., & Khoo, B. C. (2012). Immersed smoothed finite element method for two-dimensional fluid-structure interaction problems. International Journal for Numerical Methods in Engineering, 90(10), 1292-1320
[22] Wang, X. S., Zhang, L. T., & Liu, W. K. (2009). On computational issues of immersed finite element methods. Journal of Computational Physics, 228(7), 2535-551.
[23] Joshi, A. Y., Bansal, A., & Rakshit, D. (2017). Effects of baffles on sloshing impact pressure of a chamfered tank. Procedia Engineering, 173, 940-947.
[24] Roy, S., Heltai, L., & Costanzo, F. (2015). Benchmarking the immersed finite element method for fluid-structure interaction problems. Computers and Mathematics with Applications, 69(10), 1167-1188.
[25] Nanal, N. S., Miller, S. T., Thomas, J. D., & Zhang, L. T. (2023). Fluid-shell structure interactions with finite thickness using immersed method. Computer Methods in Applied Mechanics and Engineering, 403, 115697.
[26] Liu, W. K., Jun, S., & Zhang, Y. F. (1995). Reproducing kernel particle methods. International journal for numerical methods in fluids, 20(8-9), 1081-1106.
[27] Zhang, L. T., & Gay, M. (2008). Imposing rigidity constraints on immersed objects in unsteady fluid flows. Computational Mechanics, 42(3), 357-370.
[28] Wang, X., & Liu, W. K. (2004). Extended immersed boundary method using FEM and RKPM. Computer Methods in Applied Mechanics and Engineering, 193(12-14), 1305-1321.
[29] Faltinsen, O. M. (1978). A numerical nonlinear method of sloshing in tanks with two-dimensional flow. Journal of Ship Research, 22(03), 193-202.
[30] Faltinsen, O. M. (1974). A nonlinear theory of sloshing in rectangular tanks. Journal of Ship Research, 18(04), 224-241.
[31] Richter, T. (2013). A Fully Eulerian formulation for fluid-structure-interaction problems. Journal of Computational Physics, 233, 227-240.
[32] Sun, Y., Xi, G., & Sun, Z. (2019). A fully Lagrangian method for fluid-structure interaction problems with deformable floating structure. Journal of Fluids and Structures, 90, 379-395.
[33] Wiens, J. K., & Stockie, J. M. (2015). An efficient parallel immersed boundary algorithm using a pseudo-compressible fluid solver. Journal of Computational Physics, 281, 917-941.
[34] Xu, S., & Wang, Z. J. (2006). An immersed interface method for simulating the interaction of a fluid with moving boundaries. Journal of Computational Physics, 216(2), 454-493.
[35] Zhao, D., Hu, Z., Chen, G., Lim, S., & Wang, S. (2018). Nonlinear sloshing in rectangular tanks under forced excitation. International Journal of Naval Architecture and Ocean Engineering, 10(5), 545-565.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98741-
dc.description.abstract隨著高效能運算技術的蓬勃發展,伺服器所搭載的處理器運算能力持續提升,伴隨而來的熱能散逸問題亦日益嚴峻。傳統風冷散熱技術已難以滿足高熱通量設備的冷卻需求。作為新興的散熱解決方案,浸沒式冷卻(Immersion Cooling)透過將伺服器元件完全浸泡於具電絕緣性的冷卻液中,有效提升熱交換效率、降低能耗與噪音,並延長設備壽命。此類冷卻技術背後牽涉到流體與固體之間複雜的交互作用,因此對流固耦合(Fluid-Structure Interaction, FSI)模擬的精確度與效率提出更高要求。流固耦合問題的應用不僅侷限於電子冷卻領域,亦廣泛存在於土木工程結構(如橋梁與離岸風機)、生物醫學系統與微機電元件(MEMS)等多種跨尺度工程中。儘管FSI模擬具有高度應用潛力,但傳統耦合方法在面對幾何複雜或物理行為劇烈變化的情況時,往往面臨網格劃分困難與計算成本過高等挑戰。
為解決此類問題,本研究致力於發展一套整合沉浸式有限元素法(Immersed Finite Element Method, IFEM)之流固耦合模擬系統。核心技術在於運用使用者自定義函式(User-Defined Function, UDF),以C語言撰寫嵌入至商用計算流體力學軟體AcuSolve之中,藉由二次開發的方式實現流場與固體間交互作用的耦合計算。該UDF模組具備高度可擴充性與靈活性,允許使用者根據模擬需求進行程式修改與功能擴充,成功將IFEM演算法實現在現有的商用求解器上。
本論文內容涵蓋模擬理論基礎、系統開發流程與UDF模組設計與驗證。論文架構如下:第一、二章回顧流固耦合的研究背景,並介紹有限元素法、超彈性材料與沉浸式有限元素法等相關理論;第三章說明UDF模組的開發流程與整合架構;第四章以所開發之UDF模組實作柔性固體與不同流場之交互作用,後半部則模擬振動箱內液體潑濺情境並進行分析;第五章則總結本研究成果並提出未來可能的延伸方向。
zh_TW
dc.description.abstractWith the rapid advancement of high-performance computing technologies, the computing capabilities of server processors have significantly improved, resulting in increasingly severe heat dissipation challenges. Traditional air-cooling methods are no longer adequate to manage the high heat fluxes generated by such systems. As an emerging solution, immersion cooling submerges server components entirely in dielectric fluids, effectively enhancing heat transfer efficiency, reducing energy consumption and noise, and extending device lifespan. However, this innovative cooling approach involves complex fluid–solid interactions, thereby placing higher demands on the accuracy and robustness of fluid–structure interaction (FSI) simulations.
FSI problems are not limited to electronic cooling; they are prevalent across a wide range of multiscale engineering applications, including civil infrastructure (e.g., bridges and offshore wind turbines), biomedical systems, and micro-electromechanical systems (MEMS). Despite its broad applicability, traditional FSI simulation methods often encounter challenges such as complex mesh generation and high computational costs, particularly when dealing with intricate geometries or strongly nonlinear physical behaviors.
To overcome these limitations, this study proposes a simulation framework for FSI based on the Immersed Finite Element Method (IFEM). The core approach involves embedding User-Defined Functions (UDFs), written in C, into the commercial computational fluid dynamics (CFD) software AcuSolve. This secondary development enables direct coupling between the fluid and solid domains. The developed UDF module is highly modular and extensible, allowing users to adapt and expand the system to suit specific simulation requirements. As a result, the IFEM algorithm is effectively integrated into a commercial solver environment.
This thesis presents the theoretical foundations, system implementation, and validation of the proposed framework. Chapters 1 and 2 review the background of FSI and introduce relevant theoretical concepts, including the finite element method, hyperelastic material models, and IFEM. Chapter 3 describes the development and integration process of the UDF module. Chapter 4 showcases the simulation of flexible structures interacting with various flow fields using the developed UDF, followed by an application to the simulation of liquid sloshing in a vibrating tank. Finally, Chapter 5 summarizes the key findings and suggests directions for future research.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-08-18T16:18:28Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-08-18T16:18:28Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents誌謝 i
摘要 ii
Abstract iii
目次 v
圖次 ix
表次 xviii
第一章 緒論 1
1.1 研究動機 1
1.2 研究背景 2
1.3 文獻回顧 4
1.3.1 傳統方法:ALE與動態網格技術 4
1.3.2 無網格與粒子法:SPH、MPM 4
1.3.3 沉浸式方法:Immersed Boundary與IFEM 5
1.4 研究架構 5
第二章 數值模擬方法與流固耦合理論基礎 7
2.1 流體控制方程式 8
2.1.1 質量守恆(連續方程式) 8
2.1.2 動量守恆(Navier-Stokes方程式) 8
2.1.3 綜合控制方程組 9
2.2 數值求解流程與離散方法 9
2.2.1 有限元素法於流體問題中的應用 10
2.2.2 控制方程式與無因次化處理 10
2.2.3 元素與形狀函數建構 12
2.2.4 弱形式推導與離散化 13
2.2.5 有限元素組裝與矩陣形式 14
2.3 超彈性材料模型 15
2.3.1 座標描述與變形梯度 15
2.3.2 柯西應力 17
2.4 沉浸式有限元素法理論與控制方程式 18
2.4.1 沉浸式有限元素法理論背景與座標系統描述方法 18
2.4.2 控制方程式拆解與耦合邊界處理 18
2.4.3 插值與分布機制 20
2.4.4 弱形式建構與有限元素法整合 21
2.4.5 沉浸式有限元素法的耦合執行步驟 23
第三章 系統開發架構 24
3.1 CFD求解器AcuSolve與模擬軟體SimLab 24
3.2 流固耦合模擬整合流程與開發架構 25
3.2.1 程式撰寫 26
3.2.2 二次開發(Secondary development) 26
3.2.3 程式技術 27
3.3 使用者自定義函數(UDF)開發與機制整合 32
3.3.1 C語言FEM程式碼驗證 33
3.3.2 UDF的運行機制 39
3.4 UDF程式碼架構與運行Flowchart 42
3.4.1 UDF程式碼架構 42
3.4.2 UDF Flowchart 43
第四章 實例與正確性驗證 46
4.1 UDF搭配商用軟體及求解器的操作流程 46
4.2 流經浸沒柔性固體之穴室流 48
4.2.1 模型設定 48
4.2.2 模擬參數設定(一) 49
4.2.3 模擬結果與討論(一) 49
4.2.4 模擬參數設定(二) 54
4.2.5 模擬結果與討論(二) 54
4.3 流經柔性固體表面之穴室流 59
4.3.1 模型設定與模擬參數設定 59
4.3.2 模擬結果與討論 63
4.4 流經柔性固體之管流 66
4.4.1 模型設定與模擬參數設定 (一) 66
4.4.2 模擬結果與討論 (一) 67
4.4.3 模型設定與模擬參數設定 (二) 72
4.4.4 模擬結果與討論 (二) 74
4.5 振動箱內液體之潑濺 80
4.5.1 振動箱內無擋板之潑濺 81
4.5.1.1 模型設定與模擬參數設定 81
4.5.1.2 模擬結果與討論 82
4.5.2 振動箱內含剛體擋板之潑濺 91
4.5.2.1 模型設定與模擬參數設定 91
4.5.2.2 模擬結果與討論 93
4.5.3 振動箱內含柔性擋板之潑濺(一) 118
4.5.3.1 模型設定與模擬參數設定 118
4.5.3.2 模擬結果與討論 120
4.5.4 振動箱內含柔性擋板之潑濺 (二) 160
4.5.4.1 模型設定與模擬參數設定 (1) 160
4.5.4.2 模擬結果與討論 (1) 161
4.5.4.3 模型設定與模擬參數設定 (2) 168
4.5.4.4 模擬結果與討論 (2) 169
第五章 結論與未來展望 179
5.1 結論 179
5.2 未來展望 180
參考文獻 181
-
dc.language.isozh_TW-
dc.subject二次開發zh_TW
dc.subject使用者自定義函式zh_TW
dc.subject沉浸式有限元素法zh_TW
dc.subject流固耦合zh_TW
dc.subjectImmersed Finite Element Method (IFEM)en
dc.subjectUser-Defined Function (UDF)en
dc.subjectSecondary Developmenten
dc.subjectFluid-Structure Interaction (FSI)en
dc.title以流體模擬軟體為計算引擎之流固耦合力學分析系統開發zh_TW
dc.titleDevelopment of a Fluid-Structure Interaction Analysis System Using a Fluid Simulation-Based Software Engineen
dc.typeThesis-
dc.date.schoolyear113-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee劉建豪;吳筱梅;陳壁彰;董奕鍾zh_TW
dc.contributor.oralexamcommitteeChien-Hao Liu;Hsiao-Mei Wu;Bi-Chang Chen;Yi-Chung Tungen
dc.subject.keyword流固耦合,沉浸式有限元素法,使用者自定義函式,二次開發,zh_TW
dc.subject.keywordFluid-Structure Interaction (FSI),Immersed Finite Element Method (IFEM),User-Defined Function (UDF),Secondary Development,en
dc.relation.page184-
dc.identifier.doi10.6342/NTU202503615-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2025-08-12-
dc.contributor.author-college工學院-
dc.contributor.author-dept機械工程學系-
dc.date.embargo-lift2025-08-19-
顯示於系所單位:機械工程學系

文件中的檔案:
檔案 大小格式 
ntu-113-2.pdf9.02 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved