Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
    • Advisor
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 電機工程學系
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98738
Full metadata record
???org.dspace.app.webui.jsptag.ItemTag.dcfield???ValueLanguage
dc.contributor.advisor郭斯彥zh_TW
dc.contributor.advisorSy-Yen Kuoen
dc.contributor.author歐家琇zh_TW
dc.contributor.authorChia-Hsiu Ouen
dc.date.accessioned2025-08-18T16:17:47Z-
dc.date.available2025-09-17-
dc.date.copyright2025-08-18-
dc.date.issued2025-
dc.date.submitted2025-08-06-
dc.identifier.citationR. Yasaei, S. Faezi and M. A. Al Faruque, "Golden Reference-Free Hardware Trojan Localization Using Graph Convolutional Network," in IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 30, no. 10, pp. 1401-1411.
K. Hasegawa, M. Oya, M. Yanagisawa and N. Togawa, "Hardware Trojans classification for gate-level netlists based on machine learning," 2016 IEEE 22nd International Symposium on On-Line Testing and Robust System Design (IOLTS), Sant Feliu de Guixols, Spain, 2016, pp. 203-206.
A. Jain, Z. Zhou and U. Guin, "Survey of Recent Developments for Hardware Trojan Detection," 2021 IEEE International Symposium on Circuits and Systems (ISCAS), Daegu, Korea, 2021, pp. 1-5.
Trusthub. Available on-line: https://www.trust-hub.org, 2016.
A. Sarihi, A. Patooghy, P. Jamieson and A. -H. A. Badawy, "Hiding in Plain Sight: Reframing Hardware Trojan Benchmarking as a Hide&Seek Modification," in IEEE Embedded Systems Letters, vol. 16, no. 4, pp. 361-364.
R. Brayton and A. Mishchenko, “ABC: An academic industrial-strength verification tool,” in Proc. 22nd Int. Conf., Comput. Aided Verif., 2010, pp. 24–40.
S. -Y. Yu, R. Yasaei, Q. Zhou, T. Nguyen and M. A. Al Faruque, "HW2VEC: a Graph Learning Tool for Automating Hardware Security," 2021 IEEE International Symposium on Hardware Oriented Security and Trust (HOST), Tysons Corner, VA, USA, 2021, pp. 13-23.
S. Bhunia, M. S. Hsiao, M. Banga and S. Narasimhan, "Hardware Trojan Attacks: Threat Analysis and Countermeasures," in Proceedings of the IEEE, vol. 102, no. 8, pp. 1229-1247.
L. H. Goldstein and E. L. Thigpen, "SCOAP: Sandia Controllability/Observability Analysis Program," in 17th Design Automation Conference, 1980, pp. 190-196.
M. C. Hansen, H. Yalcin, and J. P. Hayes, “Unveiling the ISCAS-85 benchmarks: A case study in reverse engineering,” IEEE Design Test Comput., vol. 16, no. 3, pp. 72–80, Jul.–Sep. 1999.
J. Cruz, Y. Huang, P. Mishra and S. Bhunia, "An automated configurable Trojan insertion framework for dynamic trust benchmarks," 2018 Design, Automation & Test in Europe Conference & Exhibition (DATE), Dresden, Germany, 2018, pp. 1598-1603.
A. Sarihi, A. Patooghy, P. Jamieson, and A.-H. A. Badawy, “Trojan playground: A reinforcement learning framework for hardware trojan insertion and detection,” J. Supercomput., vol. 80, pp. 14295–14329, Jul. 2024.
A. Sarihi, A. Patooghy, P. Jamieson, and A.-H. A. Badawy, “Hardware Trojan insertion using reinforcement learning,” in Proc. Great Lakes Symp. VLSI, 2022, pp. 139–142.
V. Gohil, S. Patnaik, H. Guo, D. Kalathil, and J. Rajendran,“DETERRENT: Detecting trojans using reinforcement learning,” in Proc. 59th ACM/IEEE Design Autom. Conf., 2022, pp. 697–702.
H. Salmani, “COTD: Reference-free hardware trojan detection and recovery based on controllability and observability in gate-level netlist,” IEEE Trans. Inf. Forensics Security, vol. 12, pp. 338–350, 2016.
M. Hicks, M. Finnicum, S. T. King, M. M. K. Martin and J. M. Smith, "Overcoming an Untrusted Computing Base: Detecting and Removing Malicious Hardware Automatically," 2010 IEEE Symposium on Security and Privacy, Berkeley/Oakland, CA, 2010, pp. 159-172.
Q. Liu, P. Zhao and F. Chen, "A Hardware Trojan Detection Method Based on Structural Features of Trojan and Host Circuits," in IEEE Access, vol. 7, pp. 44632-44644, 2019.
K. Hasegawa, M. Yanagisawa and N. Togawa, "Trojan-feature extraction at gate-level netlists and its application to hardware-Trojan detection using random forest classifier," 2017 IEEE International Symposium on Circuits and Systems (ISCAS), Baltimore, MD, 2017, pp. 1-4.
C. H. Kok, C. Y. Ooi, M. Moghbel, N. Ismail, H. S. Choo and M. Inoue, "Classification of Trojan Nets Based on SCOAP Values using Supervised Learning," 2019 IEEE International Symposium on Circuits and Systems (ISCAS), Sapporo, Japan, 2019, pp. 1-5.
H. Haibo, B. Yang, E. A. Garcia, and L. Shutao, "ADASYN: Adaptive synthetic sampling approach for imbalanced learning," in 2008 IEEE International Joint Conference on Neural Networks (IEEE World Congress on Computational Intelligence), 2008, pp. 1322-1328.
H. Lashen, L. Alrahis, J. Knechtel and O. Sinanoglu, "TrojanSAINT: Gate-Level Netlist Sampling-Based Inductive Learning for Hardware Trojan Detection," 2023 IEEE International Symposium on Circuits and Systems (ISCAS), Monterey, CA, USA, 2023, pp. 1-5.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/98738-
dc.description.abstract隨著現代積體電路(IC)設計日益仰賴委外製造與第三方智慧財產權(3PIP)的整合,硬體木馬(Hardware Trojans, HTs)已成為一項重要的系統安全威脅。機器學習被視為具潛力的木馬偵測方法,然而,其偵測效能高度依賴訓練資料的結構多樣性。Seeker1 是近期提出的基準電路生成方法,利用邏輯合成工具產生功能等效但結構上有所差異的電路變體。惟其評估流程建立於暫存器傳輸層級(RTL)模型之上,難以有效分析經結構轉換後已喪失高階語意資訊的電路設計。
為彌補此一落差,本研究提出一套基於 SCOAP(Sandia Controllability/Observability Analysis Program)指標的閘級評估方法。我們重建經結構轉換之硬體木馬基準電路,並從其閘級電路中提取可控制性(controllability)與可觀測性(observability)數值,以訓練隨機森林(Random Forest)分類器進行木馬與正常電路之辨識。實驗結果顯示:僅以原始設計訓練之模型在面對結構轉換電路時表現明顯下滑;相較之下,於具結構多樣性之資料集訓練所得之模型,則能於各類測試組合中維持穩定且高準確率。此結果驗證了結構多樣性在提升閘級硬體木馬偵測模型之泛化能力與穩健性方面的重要性。
zh_TW
dc.description.abstractAs modern integrated circuit (IC) design increasingly relies on outsourcing and third-party intellectual property (3PIP), the threat of hardware Trojans (HTs) has become a major security concern. Machine learning has emerged as a promising approach for Trojan detection, yet the performance of such models largely depends on the structural diversity of the training data. Seeker1, a recently proposed benchmark generation method, utilizes a logic synthesis tool to produce functionally equivalent but structurally different circuit variants. However, its evaluation applies on an RTL-level model, which is incompatible for analyzing structurally transformed designs that lack high-level constructs.
To address this gap, this thesis proposes a gate-level evaluation methodology using SCOAP (Sandia Controllability/Observability Analysis Program) metrics. We regenerate structurally transformed Trojan benchmarks, extract controllability and observability values from their gate-level netlists and train a Random Forest classifier to distinguish Trojan and benign nets. Experimental results show that models trained solely on original designs perform poorly when evaluated on structurally transformed circuits, while those trained on structurally diverse datasets—including transformed variants—achieve consistently high accuracy. These findings validate the importance of structural diversity in enhancing the generalization and robustness of gate-level Trojan detection models.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2025-08-18T16:17:47Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2025-08-18T16:17:47Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents誌謝 i
中文摘要 ii
ABSTRACT iii
CONTENTS iv
LIST OF FIGURES vi
LIST OF TABLES vii
Chapter 1 Introduction 1
1.1 Motivation 1
1.2 Contribution 2
1.3 Organization of Thesis 3
Chapter 2 Related Work and Background 4
2.1 Hardware Trojan 4
2.2 ABC Logic Synthesis Tool 4
2.3 HW2VEC 8
2.3.1 HW2VEC and its Reliance on High-Level Constructs 9
2.3.2 Limitations of RTL-Based Analysis for Transformed Circuits 10
2.4 Seeker1: Structurally Transformed Trojan Benchmarks 11
2.5 Gate-Level Detection Approaches and SCOAP Metrics 13
2.5.1 Gate-level netlists: structure and properties 13
2.5.2 SCOAP metric 14
2.5.3 Gate-Level Detection Approaches 17
Chapter 3 Methodology 19
3.1 Benchmark Generation 19
3.2 Classifier 20
Chapter 4 Experiment 23
4.1 Setup 23
4.2 Evaluation Metric 24
4.3 Results and Analysis 25
4.3.1 SCOAP Distribution in Transformed Benchmarks 25
4.3.2 Classifier Performance Across Variants 26
Chapter 5 Conclusion and Future Works 30
REFERENCE 32
-
dc.language.isozh_TW-
dc.subject硬體木馬zh_TW
dc.subjectSCOAPzh_TW
dc.subject閘級電路zh_TW
dc.subject結構轉換zh_TW
dc.subjectStructural Transformationen
dc.subjectHardware Trojanen
dc.subjectSCOAPen
dc.subjectGate-level Netlisten
dc.title基於SCOAP於閘級層評估經結構轉換之硬體木馬基準電路zh_TW
dc.titleEvaluating Structurally Transformed Hardware Trojan Benchmarks at the Gate-level Using SCOAPen
dc.typeThesis-
dc.date.schoolyear113-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee林宗男;雷欽隆;顏嗣鈞;袁世一;劉智弘zh_TW
dc.contributor.oralexamcommitteeTsung-Nan Lin;Chin-Laung Lei;Hsu-Chun Yen;Shih-Yi Yuan;Chih-Hung Liuen
dc.subject.keyword硬體木馬,SCOAP,閘級電路,結構轉換,zh_TW
dc.subject.keywordHardware Trojan,SCOAP,Gate-level Netlist,Structural Transformation,en
dc.relation.page34-
dc.identifier.doi10.6342/NTU202503321-
dc.rights.note未授權-
dc.date.accepted2025-08-10-
dc.contributor.author-college電機資訊學院-
dc.contributor.author-dept電機工程學系-
dc.date.embargo-liftN/A-
Appears in Collections:電機工程學系

Files in This Item:
File SizeFormat 
ntu-113-2.pdf
  Restricted Access
1.03 MBAdobe PDF
Show simple item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved